Asterisk

Asterisk Administrator Guide

Asterisk Development Team <asteriskteam@digium.com>

1. Sangoma and Digium Join Together FAQ ot e e e 6

2. ADOUL the PrOJECt . .o o 8
2.1 A Brief History of the ASterisk ProjeCt e e e 9
2.2 Asterisk as a Swiss Army Knife Of Telephony 10
2.3 ASTEriSK VBISIONS . .o 11
2.4 License INfOrmMation 13
2.4.1 Voice Prompts and Music 0N HOId LICENSEot e e e e e e e e 15

2.5 SUPPOItEd PlatfOrms . . o 16
B GEtliNg Staredo e 17
3.1 BeginNNiNg AStEriSK . . oot e e 18
3.2 INStalling ASteriSK . . .o 20
3.2.1 Installing ASterisk FrOm SOUICEo e e e e e e e e e e 21
3.2.2 Alternate Install Methods 50
3.2.3 Installing Asterisk on Non-Linux Operating SYStemMSttt e 59

BB HElO WOrId . 62
4 FUNdamMeNtalS . .. 66
4.1 Asterisk ArChItECIUIE o .o 67
4.1.1 Asterisk Architecture, The Big PIiCtUIe e e e e 68
4.1.2 Types of ASterisk MOAUIESo 70

4.2 Directory @and File SITUCIUIEo e e e e e e e e e e e e e e 80
4.3 Asterisk CoNfiQUIatiONo e 82
4.3.1 Asterisk Configuration FileS 83
4.3.2 Database Support Configurationt 98
4.3, 3 SO R Y ottt e e 104

4.4 Asterisk Internal Database 112
4.4.1 SQLite3 astdb back-end e e e 113

4.5 KEY CONCEPES ot ittt ettt e e e e 115
L =74 o [= 116
45,2 CNaNNelS .. 120

A D B FraMES .o 123
4.5.4 States and PreSENCE ittt 131
4.5.5The StasisS MESSAgE BUSottt e e e e e 139

D, CONMIGUIALION . . ot e e e 141
B5.1.Core CoNfIQUIALIONottt e e e et e e e e e e e e e e 142
5.1.1 Asterisk Main Configuration File 143
5.1.2 TIMING INEITACES oot e e 146
5.1.3 Asterisk Builtin mini-HTTP Server 148
5.1.4 Logging ConfIgUIrationottt e e e e e e e e 149
5.1.5 Asterisk CLI Configuration o e 151
5.1.6 Configuring the Asterisk Module LOBOEr e e e e 152
5.1.7 Configuring Localized Tone INiCAtIONSttt e e e e e e 153
5.1 8 Vide0 TelePRONY .. o 154
5.1.9VIdE0 CONSOIE .. .o 155

5.1 10 NAMEd ACLS .o 158

5.2 Channel DIiVEIS .. 161
B2 L S P L 162
5.2.2 Inter-Asterisk eXchange protocol, VErsion 2 (IAX2)ot 245

B 2. B DAH DD . 258
5.2.4 Local Channel 259
B2 D MOtif oo 270
B2 B MIS DN L 275
5.2.7 Mobile Channel 287

5. 2. B UNIStIM L 299
B2, SKINNY o 314
5.2.10 RTP Packetization e 320
5.2.11 1P Quality Of SEIVICEo e 322
5.2.12 AUdIOSOCKEL . . .o 325

LR I 1| o] o o 326
5.3.1 Contexts, Extensions, and PrioritieS 327
5.3.2 Special Dialplan EXIENSIONSot e 329
5.3.3InClude StatemMeNtS 330
5.3.4 SWItCh StaleMENTS 335

D 3 B VaNaDlES .. 336
5.3.6 Pattern MatChing e e 363

5. 3.7 SUDIOULINES . . .o 367

B 3.8 EXPIESSIONS . . oottt et e e e e 382
5.3.9 Conditional APPlICAtIONS oo e e e 394
5.3.10 Privilege Escalations with Dialplan FUNCLIONS o e e e 395
5.3.11 Asterisk Extension Language (AEL)ttt 396
5.3.12 Lua Dialplan Configurationt e e e 434

B4 FBAIUIES . . .ottt e 449

5.4.1 Feature Code Call Transiers e e e e 450

5.4.2 ONeE-TOUCH FEaUIES . . .ttt e e e e e e e e e e 453

D43 Call PICKUD . .o 455
5.4.4 BUilt-in DYNamiC FEAtUIESottt e e e e 458
5.4.5 Custom DYyNamiC FEAtUIES ottt e e e e e e e e e 459
5.4.6 Call Parkingo e 461

B APPIICALIONS . . .t e e 472
5.5.1 Answer, Playback, and Hangup AppliCations 473
5.5.2 Bridge ApPlCatION e 474
5.5.3 Conferencing AppPIiCatiONSo 475
5.5.4 Dial APPICAtION . ..o 493
5.5.5 Directory AP ICatiONo e e 494
5.5.6 Early Media and the Progress AppliCation 495
5.5.7 External IVR INtErface 496
5.5.8 MACIOEXCIUSIVE 499
5.5.9 AStEriSK QUEBUES . ..o e e 500
5.5.10 The Read ApPlCatioN e e e e e e 526

B D L S S L 527
5.5.12 The Verbose and NOOPD AppPliCatioNS e e e e 529
5.5. 13 V0ICEMAIl 530
5.5.14 Short Message ServiCe (SMS)ttt e e e e e e 542
5.5.15 Shared Line AppPearanCes (SLA)ottt e e 553

BB FUNCHIONS . . . 569
5.6.1 Asterisk Dialplan FUNCHON EXamPIeso e e 571
5.6.2 Database TranSacCtioNSttt e e 572
5.6.3 Manipulating Party ID INfOrmation 573
5.6.4 Simple Message Desk Interface (SMDI) INntegrationt 577

D7 REPOIING . . .ottt e e 580
5.7.1 Call Detail Records (CDR)ttt e e e e e e e 581
5.7.2 Channel Event Logging (CEL)t e e e e e e e e e e e 592

B B MBI ACES . . . 612
5.8.1 Asterisk Calendaringttt e 613
5.8.2 Asterisk Call Files 619
5.8.3 Asterisk Gateway Interface (AGI) 621
5.8.4 Asterisk Manager Interface (AMI)o 622
5.8.5 Asterisk REST Interface (ARot e e e e e 644
5.8.6 Back-end Database and Realtime CONNECLIVILYot e e 800
5.8.7 Distributed DeVICE STAte 826
5.8.8 Simple Network Management Protocol (SNMP) SUPPOItot e e 839
5.8.9 Speech ReCOgNItION APl . . . e 851
5.8.10 Utilizing the StatsD Dialplan AppliCation 856

5.0 C0UBC OPUS et ittt et e e e e e 858
B A0 WEDRT C . .ot 860
5.10.1 Configuring Asterisk for WEbRTC ClieNtSo e e e e e e e e e 861
5.10.2 WebRTC tutorial USINg SIPMLSo e e e e 866
5.10.3 Installing and Configuring CyberMegaPhone e 871

LS =T o] o) 4= o 876
6.1 Basic PBX FUNCHONAlItYo e e e e 877
6.1.1 The MOSt BasiC PBX 878
6.1.2 Creating SIP ACCOUNTSt e e e e e e e e e e e e e e e e e 879
6.1.3 Registering Phones t0 ASterisk 882
6.1.4 Creating Dialplan EXIENSIONS oo 883
6.1.5 Making a Phone Call 884
6.1.6 Auto-attendant and IVR MENUSo 885
6.1.7 Adding Voice Mail to Dialplan EXtENSIONSttt e e 892

6.2 Deployment In YOUr NeIWOIKo o e e e e e e e e 895
6.3 Emergency Callingt e 896
6.4 Important Security CONSIAEIAtIONS oottt ettt e e e e e e e e e 897
6.4.1 NEtWOIK SECUILY . . o .ottt et e e e e e et e e e e e e e e e e e e e 898
6.4.2 Dialplan SECUIILY oottt e e e e 899
B.4.3 LOQ SBCUINY . oot sttt et e e e e e e e e e e 900
6.4.4 Asterisk SecUrity WebINarS 901

6.5 Privacy CoNnfiQUIationt e e e e 902
B6.5. 1 FTC DON't Call LiSt e e 903
6.5.2 FIghting AULOTIAIEISo e e e e e 904
6.5.3 Fighting EmpPty Caller ID e e 905
6.5.4 Using Welcome Menus fOr PrIVACYottt e e e e e e e e e e e 906
6.5.5 Making life difficult for telemarketers 907
6.5.6 USING Call SCrEENING oottt et e e e e e e e e e e e e e 908
6.5.7 Call SCreening OPtiONSt e e e 909
6.5.8 Screening Calls with Recorded INtrodUCHIONSottt e e e e e e e 910

6.6 Internationalization and Localization 913

6.6.1 ASterisk SOUNAS PaCKagESttt e e e 914

6.6.2 Sound Prompt Searching based on Channel Languagettt e e 917

6.7 TroUDIESNOOtING . . . oot e e 918
6.7.1 SIP RetranSmIiSSIONSttt et ettt et e 919
6.7.2 Troubleshooting Asterisk Module LOadingttt e e e 921
6.7.3 Unable to connect to remote ASEEriSK i 924

B.8 IPVB SUPPOI . . .ttt e e 926

6.9 PSTN CONNECHIVILY . . ottt e e et e 927
6.9.1 AQVICE Of Carge oot e e e e 928
6.9.2 Call Completion Supplementary SErviCes (CCSS)ttt e e e e e 931
6.9.3 Caller ID N INdia 937
6.9.4 Signaling System NUMDEr 7 e e 939

B.10 SeCUIre CalliNgottt e e e 941
6.10.1 Secure Calling SPECITICSt e 942
6.10.2 Secure Calling TULOMIAl e 943
6.10.3 SIP TLS TranSPOIT . . . ottt ittt e e e et e e e e e e e e e e e e e e e 954

6.11 Reference Use Cases for ASterisk 956
6.11.1 Super AWESOME COMPANY . . o ot vttt et e e e et et e e e et e e e e e e e e e e e 957

6.12 Performance TUNINGttt e e e e et e e e e e e e e e e e e e e e e e 960

6.13 Phone Provisioning iN ASteriSKot e e 966
6.13.1 Configuration Of PhONEPrOV.CONTt e e e e e 967
6.13.2 Creating Phone Profiles 968
6.13.3 Configuration Of USErS.CONTo et e e e e e e e 969
6.13.4 Phone Provisioning TeMPIateSo e e e e 970
6.13.5 Phone Provisioning, Putting it all together 971

6.14 Asterisk SeCUNty FrameWOrK e e 972
6.14.1 Security Framework OVEIVIEWottt et e et e et e e e e e e e e e e e e e 973
6.14.2 Security EVENt GENEIratioN e 974
6.14.3 Asterisk Security EVENt LOGOETot e e 975
6.14.4 SeCurity EVENIS 10 LOQ . . . oot i ettt e 976
6.14.5 Security LOg File FOrmat 977

6.15 Distributed Universal Number Discovery (DUNDI)ot e e e e e e e 979
6.15.1 Introduction 10 DUNDI L 980
6.15.2 DUNDI Dialplan FUNCLIONSottt e e e et e e e e e e e e e e e e e e e e e 981
6.15.3 Digium General Peering Agre@mMENtottt e 982

6.16 Packet LoSs Concealment (PLC)ttt e e e e e e e 989
6.16.1 PLC Background on Translation 990
6.16.2 PLC Restrictions and CaVeALSttt e 991
6.16.3 Requirements fOr PLC USEttt e e e e e e e e e e e e 992
B.06.4 PLC TIPS .+t ottt ettt e e 993

6.17 ENhANCed MESSAGING v ottt et e et e e e e e e e 994
6.17.1 Conference PartiCipant MESSAGINGo ottt ettt e e e e e e e 995
6.17.2 Conference Bridge MeSSagingottt ittt e e 998

8 1= = L1 o o 1002
7.1 SYStEM REQUINEIMENTS . . . o oottt e et e e e et et e e e e e e e 1003
7L COMPIlEr o e 1004
7.0.2 SYStem LiDraries . . o 1005

7.2 RUNNING ASTEIiSK . o e 1006
7.2.1 Stopping and Restarting Asterisk From The CLI e 1009

7.3 Maintenance and UPGradesottt et e e e e e e e 1010
7.3.1 AStEriSK BaCKUDSo 1011
7.3.2 Updating or Upgrading AsteriSK o 1012

4% o T To 1 o 1014
7.4.1 Basic Logging COMMANASottt et e et e e e e e e e e e 1015
7.4.2 Basic Logging Start-Up OPtIONSottt ettt e e e e e e e 1016
7.4.3 Call ldentifier LOgQINGgottt e e e e e 1017
7.4.4 Collecting Debug Information 1018
4.5 QUEUE LOOS ..ottt 1020
7.4.6 Verbosity in Core and RemMOte CONSOIESttt e e e e e e e 1022

7.5 Asterisk Command Line INterface 1023
7.5.1 Connecting to the ASterisk CLIo 1024
7.5.2 CLI Syntax and Help Commandsot e e e e e e 1025
7.5.3 Creating and Manipulating Channels from the CLI e 1027
7.5.4 SIMpPle CLI TriCKS . .t e e e e e e 1029

7.6 Asterisk Audio and Video Capabilitiest 1030
8. ASEErSK COMMIUNILY oottt et et e e e e e e e e e e e et e e e e e e e e 1034
8.1 Asterisk Community Code Of CONAUCTo e e e 1035
8.2 Asterisk COMMUNILY SEIVICESot e 1037
8.3 Asterisk ISsue GUIAEIINES 1038
8.4 Asterisk Module SUPPOIt STAtESo ot e e e e e e e e 1042
8.5 Asterisk Project Working Group GUIJEIINESo ot e e e e e e e 1048
8.6 COMMUNILY SEIVICES SIGNUPD . . o . vttt et e e et e 1049

8.7 Digium and Asterisk Community Export Compliance NOLCE e 1050

88IRC
8.9 Mailing Lists

8.10 Wiki Organization and Style Guide

Sangoma and Digium Join Together FAQ

9 Is Asterisk going away?

A: No. Asterisk, having been around nearly 20 years, isn’t going away. Asterisk is a core component of the business strategies of both the Sangoma and
Digium businesses and is one of the biggest reasons for this union.

9 Is FreePBX going away?

A: No, FreePBX has been available under the GPL license since 2004, and continues to be available today at both git.freepbx.org and github.com/freepbx.
Like Asterisk, FreePBX is a core component of the Sangoma and Digium business strategy.

9 Will Asterisk or FreePBX be closed-source after this change?

A: No. Both projects have been distributed under the GPL license since their inception. None of that code can ever be taken out of that license and closed
up. They will always be available for anyone to use, for free.

9 Will the project leads for Asterisk and FreePBX change?

A: No.

9 Will the distribution model for Asterisk or FreePBX change?
A: No. Developers who want to use Asterisk as a toolkit will continue to be able to download a tarball directly from the Asterisk website and downloads

site. Users who want something a little more high-level, with helpful admin and user tools, or who want a PBX, will still be able to download the FreePBX
distribution.

ﬂwill Asterisk become RPMs only?

A: No. Asterisk will continue to be able to be downloaded as a tarball, direct from the Asterisk website and downloads site.

ﬂWiII Asterisk become an ISO only?

A: No. Asterisk’s long-term strategy is to increase its usefulness as a toolkit for building communications solutions. Distributing it only as an ISO runs
counter to this strategy. Therefore, Asterisk will continue to be able to be downloaded as a tarball, direct from the Asterisk website and downloads site.

ﬂwill Asterisk be distributed as packages as well?

A: Asterisk itself is distributed as tarballs. Within the FreePBX Distro, Asterisk is provided as RPMs and SRPMs, as a part of the distribution itself.

9 Do all of the licensing grants for contributing code remain in force?

A: Yes. All existing Asterisk and FreePBX Contributors Licenses remain in force and do not need to be re-signed.

9 What does this mean for the future of the Asterisk and FreePBX projects?

A: Asterisk and FreePBX are open source projects with massive communities and have always been distributed under open source licenses. These
business changes have no negative impact on the future of these great projects. Their licenses will continue. Tarballs and source code will continue.
Support will continue. The development teams remain intact and are still focused on delivering the world’s greatest platform for open source
communications solutions.

ﬂWiII card drivers from Sangoma and others get integrated into the DAHDI project?
A: DAHDI, as it pertains to Asterisk via chan_dahdi, works with existing Sangoma telephony cards as-is, with no changes anticipated. The extensive

software support provided for Sangoma'’s telephony cards for applications other than Asterisk (e.g. data protocol and Windows support) mean that pulling
them directly into DAHDI isn't a practicable solution at this time.

ﬂWhat happens to libss7 (due to Sangoma already having commercial stacks) or opepnr2?
A: libss7 has been provided as-is for a number of years. As open-source code useful for certain SS7 related tasks, it will always be available. Openr2 has

been released as GPL by Sangoma for years and maintained by Sangoma and used in other Sangoma commercial products such as the Vega Gateways.
Therefore, efforts needed for openr2 such as bug fixes or features will continue to be handled as they have always been.

9 Will there be more people made available to the Asterisk or FreePBX teams to work on these open source projects?

A: We anticipate that this announcement results in many improvements in internal efficiencies, potentially resulting in more eyeballs working on both
projects.

ﬂWiII you start charging for access to new versions of Asterisk (like other PBX companies)?

A: No. Asterisk has never operated under a model whereby only some types of user receive access to new versions.

9 What will happen to AsteriskNOW?

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 6

http://git.freepbx.org
http://github.com/freepbx

A: AsteriskNOW will be folded into the existing FreePBX Distro, which will continue to benefit from the resources of the combined company by ensuring
that users have a stable, go to distribution for their needs. However, we understand that not everyone uses the distro and Asterisk/FreePBX will continue to
be available in tarball form for people to install in their distribution of choice. Existing users of AsteriskNOW can continue to use and upgrade it.

o What are the Asterisk commercial licensing implications? Does the license survive the deal?

A: All commercial license agreements maintain their existing terms. EXxisting licenses are not terminated upon this merger and are assigned to the new
company.

9 What does this mean for certified Asterisk?

A: Certified Asterisk is the product for customers that require SLA-backed engineering-level support of Asterisk and will continue to be offered moving
forward.

0 How are FreePBX and Switchvox planning on coexisting?
A: FreePBX and Switchvox service two different markets but have the same common goal of providing a full UC solution. We would expect to see some

features being shared between the products as the teams work and collaborate more closely together, thereby improving software development
efficiencies.

ﬂwm I still be able to get my voice prompts from Allison?

A: Yes. Allison Smith has been the voice of Asterisk and FreePBX users for the better part of two decades. You will still be able to get wonderful prompts
from her for your IVR needs since both Sangoma and Digium offer purchasing of those prompts already.

0 If | want to engage with the Asterisk and FreePBX communities, where do | go?

A: The various entry points for users into the ecosystem are designed to best-serve the types of users entering via those means. Users with questions
about Asterisk should continue to use the Asterisk Community Forums (community.asterisk.org). Users with questions about FreePBX should continue to
use the FreePBX Community Forums (community.freepbx.org). Issue reports should continue to be made at the respective issue trackers: issues.asterisk.

org and issues.freepbx.org. Users who prefer mailing lists can use the Asterisk mailing lists and users who prefer IRC can use the #asterisk or #freepbx
IRC channels. Some of this may change in the future, but until that happens, please communicate the same way you do today.

9 How did Digium and Sangoma end up together after such along period of competition?
A: Having collaborated together for years for the good of open source communications, the combined Sangoma and Digium organization will have greater

financial and competitive strength to meet market challenges. This is a consolidation of the major players in the Asterisk-related ecosystem - who can now
work together fully instead of competing against each other.

OWiII Astricon still exist? Is Astricon still happening this year?

A: Yes. Astricon is still happening in Orlando, FL from October 9-11, 2018. We hope to see you there! Register Now!

o Is there any impact to trademark licensing?

A: No. Existing trademark license agreements survive this announcement.

GWhere should I go for questions about commercial products?

A: Contact your Sangoma and Digium account managers.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 7

http://community.asterisk.org
http://community.freepbx.org
http://issues.asterisk.org
http://issues.asterisk.org
http://issues.freepbx.org
https://www.asterisk.org/community/astricon-user-conference/register
https://www.asterisk.org/community/astricon-user-conference/register

About the Project

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

A Brief History of the Asterisk Project

Linux Support Services

Way, way back in 1999 a young man named Mark Spencer was finishing his Computer Engineering degree at Auburn University when he hit on

an interesting business concept. 1999 was the high point in the .com revolution (aka bubble), and thousands of businesses world-wide were discovering
that they could save money by using the open source Linux operating system in place of proprietary operating systems. The lure of a free operating
system with open access to the source code was too much to pass up. Unfortunately there was little in the way of commercial support available for Linux
at that time. Mark decided to fill this gap by creating a company called "Linux Support Services". LSS offered a support hotline that IT professionals could
(for a fee) call to get help with Linux.

The idea took off. Within a few months, Mark had a small office staffed with Linux experts. Within a few more months the growth of the business expanded
demanded a "real" phone system that could distribute calls evenly across the support team, so Mark called up several local phone system vendors and
asked for quotes. Much to his surprise, the responses all came back well above $50,000 -- far more than Mark had budgeted for the project. Far more
than LSS could afford.

Finding a Solution

Rather than give in and take out a small business loan, Mark made a pivotal decision. He decided to write his own phone system. Why not? A phone
system is really just a computer running phone software, right? Fortunately for us, Mark had no idea how big a project he had take on. If he had known
what a massive undertaking it was to build a phone system from the ground up might have gritted his teeth, borrowed the money and spent the next
decade doing Linux support. But he didn't know what he didn't know, and so he started to code. And he coded. And he coded.

Mark had done his engineering co-op at Adtran, a communications and networking device manufacturer in Huntsville, AL. There he had cut his teeth on
telecommunications system development, solving difficult problems generating a prodigious amount of complex code in short time. This experience proved
invaluable as he began to frame out the system which grew into Asterisk. In only a few months Mark crafted the original Asterisk core code. As soon as he
had a working prototype he published the source code on the Internet, making it available under the GPL license (the same license used for Linux).

Within a few months the idea of an "open source PBX" caught on. There had been a few other open source communications projects, but none had
captured the imagination of the global population of communications geeks like Asterisk. As Mark labored on the core system, hundreds (now thousands)
of developers from all over the world began to submit new features and functions.

Digium
What became of Linux Support Services? In 2001, Linux Support Services changed its name to Digium. Digium continued to develop Asterisk in

collaboration with the community, provide services to support the development community, as well as build commercial products and services around
Asterisk which have fueled growth in both Digium and the Asterisk project. You can find out more about Digium at the Sangoma website and on wikipedia.

Asterisk in the Present

Asterisk is constantly evolving to meet the needs of the project's user-base. It's difficult to summarize the vast scope of everything that Asterisk can do as a
communications toolkit. We'll list some resources that give you an idea of what is going on in the Asterisk project at present.

Asterisk Versions :Shows release time lines, support and EOL schedules

Roadmap section :Information from developer conferences and planning sessions

CHANGES :A document in Asterisk trunk, shows functionality changes between major versions

UPGRADE :A document in Asterisk trunk, shows breaking changes, deprecation of specific features and important info on upgrading.
Mailing lists :The dev list is a great list to see what hot topics the developers are discussing in real-time.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 9

https://www.sangoma.com/open-source/
http://en.wikipedia.org/wiki/Digium
https://wiki/display/AST/Roadmap
https://github.com/asterisk/asterisk/blob/master/CHANGES
https://github.com/asterisk/asterisk/blob/master/UPGRADE.txt
http://www.asterisk.org/community/discuss

Asterisk as a Swiss Army Knife of Telephony

What Is Asterisk?

People often tend to think of Asterisk as an "open source PBX" because that was the focus of the original development effort. But calling Asterisk a PBX is
both selling it short (it is much more) and overstating it (it can be much less). Itis true that Asterisk started out as a phone system for a small business (see
the "Brief History" section for the juicy details) but in the decade since it was originally released it has grown into a universal tool for building
communications applications. Today Asterisk powers not only IP PBX systems but also VolP gateways, call center systems, conference bridges, voicemail
servers and all kinds of other applications that involve real-time communications.

Asterisk is not a PBX but is the engine that powers PBXs. Asterisk is not an IVR but is the engine that powers IVRs. Asterisk is not a call center ACD but
is the engine that powers ACD/queueing systems.

Asterisk is to communications applications what the Apache web server is to web applications. Apache is a web server. Asterisk is a communication
server. Apache handles all the low-level details of sending and receiving data using the HTTP protocol. Asterisk handles all the low level details of sending
and receiving data using lots of different communication protocols. When you install Apache, you have a web server but its up to you to create the web
applications. When you install Asterisk, you have a communications server but its up to you to create the communications applications.

Web applications are built out of HTML pages, CSS style sheets, server-side processing scripts, images, databases, web services, etc. Asterisk
communications applications are built out Dialplan scripts, configuration files, audio recordings, databases, web services, etc. For a web application to
work, you need the web server connected to the Internet. For a communications application to work, you need the communications server connected to
communication services (VolP or PSTN). For people to be able to access your web site you need to register a domain name and set up DNS entries that
point "www.yourdomain.com" to your server. For people to access your communications system you need phone numbers or VolP URIs that send calls to
your server.

In both cases the server is the plumbing that makes your application work. The server handles the low-level complexities and allows you, the application
developer, to concentrate on the application logic and presentation. You don't have to be an expert on HTTP to create powerful web applications, and you
don't have to be an expert on SIP or Q.931 to create powerful communications applications.

Here's a simple example. The following HTML script, installed on a working web server, prints "Hello World" in large type:

<htm >
<head>
<title>Hell o World Deno</title>
</ head>
<body>
<hl>Hell o Worl d! </ hl>
</ body>
</htm >

The following Dialplan script answers the phone, waits for one second, plays back "hello world" then hangs up.

exten => 100, 1, Answer ()
exten => 100, n,Wait(1)
exten => 100, n, Pl ayback(hel | o-wor | d)
exten => 100, n, Hangup()

In both cases the server components are handling all of the low level details of the underlying protocols. Your application doesn't have to worry about the
byte alignment, the packet size, the codec or any of the thousands of other critical details that make the application work. This is the power of an engine.
Who Uses Asterisk?

Asterisk is created by communication system developers, for communication system developers. As an open source project, Asterisk is a collaboration
between many different individuals and companies, all of which need a flexible communications engine to power their applications.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 10

Asterisk Versions

There are multiple supported feature frozen releases of Asterisk. Once a release series is made available, it is supported for some period of time. During
this initial support period, releases include changes to fix bugs that have been reported. At some point, the release series will be deprecated and only
maintained with fixes for security issues. Finally, the release will reach its End of Life, where it will no longer receive changes of any kind.

The type of release defines how long it will be supported. A Long Term Support (LTS) release will be fully supported for 4 years, with one additional year of
maintenance for security fixes. Standard releases are supported for a shorter period of time, which will be at least one year of full support and an additional
year of maintenance for security fixes.

The following table shows the release time lines for all releases of Asterisk, including those that have reached End of Life.

Release Series = Release Type Release Date = Security Fix Only EOL

12X 2005-11-21 2007-08-07 2010-11-21
14X LTS 2006-12-23 2011-04-21 2012-04-21
1.6.0.X Standard 2008-10-01 2010-05-01 2010-10-01
1.6.1.X Standard 2009-04-27 2010-05-01 2011-04-27
1.6.2.X Standard 2009-12-18 2011-04-21 2012-04-21
18X LTS 2010-10-21 2014-10-21 2015-10-21
10.X Standard 2011-12-15 2012-12-15 2013-12-15
11.x LTS 2012-10-25 2016-10-25 2017-10-25
12.x Standard 2013-12-20 2014-12-20 2015-12-20
13.x LTS 2014-10-24 2020-10-24 2021-10-24
14.x Standard 2016-09-26 2017-09-26 2018-09-26
15.x Standard 2017-10-03 2018-10-03 2019-10-03
16.x LTS 2018-10-09 2022-10-09 2023-10-09
17.x Standard 2019-10-28 2020-10-28 2021-10-28

New releases of Asterisk will be made roughly once a year, alternating between standard and LTS releases. Within a given release series that is fully
supported, bug fix updates are provided roughly every 4 weeks. For a release series that is receiving only maintenance for security fixes, updates are made
on an as needed basis.

If you're not sure which one to use, choose either the latest release for the most up to date features, or the latest LTS release for a platform that may have
less features, but will usually be around longer.

The schedule for Asterisk releases is visualized below (which is subject to change at any time):

[201 212 do13 bor4 [2015 [2016 [2017 [2018 [eo1s [2020 2021 | 2022 2023 | 2024

Feature freeze reminder
announcement

1.8LTS

| Feature freeze

. Fullsupport

W versonvieane

ﬂ

11LTS

H

Asterisk Release Schedule
Asterisk | Asterisk | Asterisk | Asterisk | Asterisk | Asterisk | Asterisk | Asterisk | Asterisk
14 13LTS

ﬂ

ﬂ

16 LTS

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 11

For developers, it is useful to be aware of when the feature freeze for a particular branch will occur. The feature freeze for a branch will occur 3 months
prior to the release of a new Asterisk version, and a reminder announcement will be posted to the asterisk-dev mailing list approximately 60 days prior to
the feature freeze. Asterisk versions are slated to be released the 3rd Wednesday of October. The feature freeze for a branch will occur the 3rd
Wednesday of July. An announcement reminder will be posted to the asterisk-dev mailing list the 3rd Wednesday of May. Feature freeze consists of the
creation of two branches: One for the release series and one for the initial release. Features can continue to be placed into the release series branch
according to policy but the initial release branch will be frozen.

Feature Freeze Announcement Reminder = 3rd Wednesday of May
Feature Freeze of Asterisk Branch 3rd Wednesday of July

First Release of Asterisk from Branch 3rd Wednesday of October

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 12

License Information

® Asterisk License Information
® Asterisk Sounds
® Frequently Asked Questions about Licensing
® What is an open-source license?
® What is the GNU General Public License?
® What if | want to distribute or license Asterisk under a different license?
® How can | contribute to Asterisk?

Asterisk License Information

Asterisk is distributed under the GNU General Public License version 2 and is also available under alternative licenses negotiated directly with Digium, Inc.
If you obtained Asterisk under the GPL, then the GPL applies to all loadable Asterisk modules used on your system as well, except as defined below. The
GPL (version 2) is included in this source tree in the file COPYING.

This package also includes various components that are not part of Asterisk itself; these components are in the ‘contrib' directory and its subdirectories.
These components are also distributed under the GPL version 2 as well.

Digium, Inc. (formerly Linux Support Services) holds copyright and/or sufficient licenses to all components of the Asterisk package, and therefore can grant,
at its sole discretion, the ability for companies, individuals, or organizations to create proprietary or Open Source (even if not GPL) modules which may be
dynamically linked at runtime with the portions of Asterisk which fall under our copyright/license umbrella, or are distributed under more flexible licenses
than GPL.

If you wish to use our code in other GPL programs, don't worry -- there is no requirement that you provide the same exception in your GPL'd products
(although if you've written a module for Asterisk we would strongly encourage you to make the same exception that we do).

Specific permission is also granted to link Asterisk with OpenSSL, OpenH323 and/or the UW IMAP Toolkit and distribute the resulting binary files.

In addition, Asterisk implements several management/control protocols. This includes the Asterisk Manager Interface (AMI), the Asterisk Gateway Interface
(AGI), and the Asterisk REST Interface (ARI). It is our belief that applications using these protocols to manage or control an Asterisk instance do not have
to be licensed under the GPL or a compatible license, as we believe these protocols do not create a 'derivative work' as referred to in the GPL. However,
should any court or other judiciary body find that these protocols do fall under the terms of the GPL, then we hereby grant you a license to use these
protocols in combination with Asterisk in external applications licensed under any license you wish.

The 'Asterisk' name and logos are trademarks owned by Digium, Inc., and use of them is subject to our trademark licensing policies. If you wish to use
these trademarks for purposes other than simple redistribution of Asterisk source code obtained from Digium, you should contact our licensing department
to determine the necessary steps you must take. For more information on this policy, please read: https://www.sangoma.com/legal/

If you have any questions regarding our licensing policy, please contact us:

+1.877.344.4861 (via telephone in the USA)

+1.256.428.6000 (via telephone outside the USA)

+1.256.864.0464 (via FAX inside or outside the USA)

IAX2/pbx.digium.com (via IAX2)

licensing@digium.com (via email)

Digium, Inc.

445 Jan Davis Drive NW

Huntsville, AL 35806
United States

Asterisk Sounds

License information for Asterisk sounds can be found in the Voice Prompts and Music on Hold License section.

Frequently Asked Questions about Licensing

What is an open-source license?

Wikipedia has a great article on open-source licenses, and opensource.org is a pretty definitive resource.

What is the GNU General Public License?

The GPL is a specific open-source license. Reading the preamble at this link is a great introduction, and below that is the full license text.

What if | want to distribute or license Asterisk under a different license?
Digium distributes Asterisk under a multi-licensing model often referred to as Dual-licensing and is additionally made possible by a Contributors License

Agreement. This allows Digium to provide Asterisk under licenses other than the GPL. Digium provides information on their alternative commercial licensing
at their website.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 13

https://www.sangoma.com/legal/
http://en.wikipedia.org/wiki/Open-source_license
http://opensource.org/licenses
http://opensource.org/licenses/GPL-2.0
http://en.wikipedia.org/wiki/Multi-licensing
https://wiki.asterisk.org/wiki/display/AST/Asterisk+Issue+Guidelines#AsteriskIssueGuidelines-DigiumSubmissionLicenseAgreement
https://wiki.asterisk.org/wiki/display/AST/Asterisk+Issue+Guidelines#AsteriskIssueGuidelines-DigiumSubmissionLicenseAgreement
https://www.asterisk.org/products/software/licensing

How can | contribute to Asterisk?

Documentation, new features, bug fixes, testing, protocol and programming expertise,, and general feedback are all welcome to the project. There is an ov
erview that points to many resources for developers, also you can see the guidelines for contribution to see how it works.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 14

http://www.asterisk.org/community/developers
http://www.asterisk.org/community/developers
https://wiki.asterisk.org/wiki/display/AST/Asterisk+Issue+Guidelines#AsteriskIssueGuidelines-PatchandCodesubmission

Voice Prompts and Music on Hold License

Voice Prompts

All voice prompt contributions distributed with Asterisk or available on the Asterisk downloads site are licensed as Creative Commons Attribution-Share
Alike 3.0. The process for contributing sound files can be found in the Asterisk Sounds Submission Process section.

Music On Hold

The Hold (on hold) music included with the Asterisk distribution has been sourced from opsound.org which itself distributes the music under Creative
Commons Attribution-ShareAlike 2.5 license.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

15

http://creativecommons.org/licenses/by-sa/3.0/us/
http://creativecommons.org/licenses/by-sa/3.0/us/
https://wiki/display/AST/Asterisk+Sounds+Submission+Process
http://opsound.org/
http://creativecommons.org/licenses/by-sa/2.5/legalcode
http://creativecommons.org/licenses/by-sa/2.5/legalcode

Supported Platforms

The Asterisk software can be installed on a wide range of platforms including various Linux distributions. As a project, however, we are only able to test and
support a subset of them. The Asterisk project supports 32-bit and 64-bit x86 platforms using non-end of life CentOS, RHEL, Fedora, Ubuntu, and Debian
Linux distributions. Support for other platforms and Linux distributions is best effort and is provided by the community. Any changes to allow such platforms
must not hinder or break the project supported Linux distributions.

(D Note that due to changes and improvements in compilers it is possible for Linux distribution upgrades to result in old versions of Asterisk no
longer building. If this occurs it is recommended to upgrade to the latest supported version of Asterisk.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 16

Getting Started

When learning Asterisk it is important to start off on the right foot, so this section of the wiki covers orientation for learning Asterisk as well as installation

and a simple Hello World style tutorial. These items are foundational, as knowing how to install Asterisk right the first time and where to locate the right help
resources will save you a ton of time down the road.

Those interested in Asterisk training courses and certifications may visit http://www.asterisk.org/products/training

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 17

http://www.asterisk.org/products/training

Beginning Asterisk

Asterisk is...

an Open Source software development project
written in the C Programming Language
running on Linux (or other types of Unix)
powering Business Telephone Systems
connecting many different Telephony protocols
a toolkit for building many things:
¢ an |P PBX with many powerful features and applications
®* VolP Gateways
® Conferencing systems
® and much, much more
® supporting VolP Phones as well as PSTN and POTS
® speaking SIP , the most common VolIP protocol, among others

YouTube Videos

Systm 5 Episode on Asterisk (from 2006 - see Asterisk Wiki for current installation instructions)
Official Asterisk Channel

Asterisk 123: Intro to Asterisk from Astricon 10

Asterisk 12 Overview from Astricon 10

Resources for understanding

® Acronyms and Terminology
® Telephony Terminology
® Asterisk Terms Glossary
® Telecom Acronyms (very comprehensive)
® Telephony Protocols
® |P Telephony Protocols Overview
® SIP Overview
® A Hitchhiker's Guide to SIP
® Linux & Unix
® Linux Newbie Guide
® Beginner Tutorials
® Unix Beginner Tutorial
® Installing and Configuring Asterisk
® Asterisk: The Definitive Guide 3rd Edition
® The Asterisk Wiki
® C Programming
® C Programming Tutorial
® |Interactive C Tutorial
® C Programming Quick Guide

Where to get help

® Email Lists and Live Chat (IRC)
® Asterisk Mailing List and IRC
® Web Discussion Forums
® Asterisk Community Forums
® Online Community
® Voip Users Conference main site and on Google+

Avoiding obsolete or incorrect information

When reading about Asterisk on the web, you may come across old or incorrect information.

Check which version of Asterisk is mentioned. There are significant changes in every version.

Check the published date of the article if the Asterisk version isn't provided.

Take things with a grain of salt until checked with another resource or proven correct through your own testing.

Refer to the Asterisk Wiki and the Official Asterisk Youtube Channel for the most accurate and up to date details on the specific version of Asterisk
you are using.

Please note that it is always possible that even the official documentation does not match what is written into the source code itself. If you find something
lacking or incorrect in the Asterisk documentation, please communicate it through comments on the Asterisk Wiki or by filing an issue through the Asterisk
Issues Tracker .

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 18

http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/C_programming
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Business_telephone_system
http://en.wikipedia.org/wiki/Telephony
http://www.asterisk.org/get-started/applications/pbx
http://www.asterisk.org/get-started/applications
http://www.asterisk.org/get-started/applications
http://www.asterisk.org/get-started/applications/gateway
http://www.asterisk.org/get-started/applications/conference
https://en.wikipedia.org/wiki/Public_switched_telephone_network
http://en.wikipedia.org/wiki/Plain_old_telephone_service
http://en.wikipedia.org/wiki/Session_Initiation_Protocol
http://en.wikipedia.org/wiki/Voip
http://www.youtube.com/watch?v=UP9b_FEZuUE
http://www.youtube.com/user/asteriskvideos
http://www.youtube.com/watch?v=PfSL-kekuDE
http://www.asterisk.org/community/astricon-user-conference
http://www.youtube.com/watch?v=3shZC3myQyo
http://www.asterisk.org/community/astricon-user-conference
http://en.wikipedia.org/wiki/List_of_telephony_terminology
http://www.asterisk.org/get-started/glossary
http://www.mob1le.com/acronyms.html
http://www.cisco.com/en/US/docs/voice_ip_comm/cucm/admin/4_0_1/ccmsys/a08procl.html
http://en.wikipedia.org/wiki/Session_Initiation_Protocol
https://www.rfc-editor.org/rfc/rfc5411.txt
http://linuxnewbieguide.org/
http://www.linux.org/forums/beginner-tutorials.53/
http://www.ee.surrey.ac.uk/Teaching/Unix/
http://www.asteriskdocs.org/
https://wiki.asterisk.org/wiki/display/AST/Home
http://www.cprogramming.com/tutorial/c-tutorial.html
http://www.learn-c.org/
http://www.tutorialspoint.com/cprogramming/c_quick_guide.htm
http://www.asterisk.org/community/discuss
https://community.asterisk.org
http://vuc.me
https://plus.google.com/communities/114149566116254233716
https://wiki.asterisk.org/wiki/display/AST/Home
http://www.youtube.com/user/asteriskvideos
https://wiki.asterisk.org/wiki/display/AST/Home
http://issues.asterisk.org
http://issues.asterisk.org

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

19

Installing Asterisk

Now that you know a bit about Asterisk and how it is used, it's time to get you up and running with your own Asterisk installation. There are various ways to
get started with Asterisk on your own system:

® |nstall FreePBX, the Asterisk-based distribution. This takes care of installing Linux, Asterisk, and a web-based management interface all
at the same time. FreePBX is the easiest way to get started if you're new to Linux and/or Asterisk.

® |f you're already familiar with Linux or Unix, you can simply install packages for Asterisk and its related tools using the package manager
in your operating system. We'll cover this in more detail below in Alternate Install Methods.

® For the utmost in control of your installation, you can compile and install Asterisk (and its related tools) from source code. We'll explain
how to do this in Installing Asterisk From Source.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 20

https://www.freepbx.org/downloads/freepbx-distro/

Installing Asterisk From Source

One popular option for installing Asterisk is to download the source code and compile it yourself. While this isn't as easy as using package management or
using an Asterisk-based Linux distribution, it does let you decide how Asterisk gets built, and which Asterisk modules are built.

In this section, you'll learn how to download and compile the Asterisk source code, and get Asterisk installed.
What to Download?

Untarring the Source

Building and Installing DAHDI

Building and Installing LibPRI
PJSIP-pjproject

Checking Asterisk Requirements

Using Menuselect to Select Asterisk Options
Building and Installing Asterisk

Installing Sample Files

Installing Initialization Scripts

Validating Your Installation

libsrtp

Exploring Sound Prompts

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 21

What to Download?
Asterisk

Downloads of Asterisk are available at https://downloads.asterisk.org/pub/telephony/asterisk/. The currently supported versions of Asterisk will each have a
symbolic link to their related release on this server, named asterisk-{version}-current.tar.gz. All releases ever made for the Asterisk project are available
at https://downloads.asterisk.org/pub/telephony/asterisk/releases/.

The currently supported versions of Asterisk are documented on the Asterisk Versions page. It is highly recommended that you install one of the currently
supported versions, as these versions continue to receive bug and security fixes.

Which version should I install?
® |f you want a rock solid communications framework, choose the latest Long Term Support (LTS) release.

® |f you want the latest cool features and capabilities, choose the latest release of Asterisk. If that is a Standard release, note
that these releases may have larger changes made in them than LTS releases.

Unless otherwise noted, for the purposes of this section we will assume that Asterisk 14 is being installed.
Review Asterisk's System Requirements in order to determine what needs to be installed for the version of Asterisk you are installing. While Asterisk will
look for any missing system requirements during compilation, it's often best to install these prior to configuring and compiling Asterisk.

Asterisk does come with a script, install_prereq, to aid in this process. If you'd like to use this script, download Asterisk first, then see Checking Asterisk
Requirements for instructions on using this script to install prerequisites for your version of Asterisk.

On this Page

® Asterisk

® Downloading Asterisk
® Other Projects

® libpri

® DAHDI
® Download Locations

Downloading Asterisk
Browse to https://downloads.asterisk.org/pub/telephony/asterisk, select asterisk-14-current.tar.gz, and save the file on your file system.
You can also get the latest releases from the downloads page on asterisk.org.

Alternatively, you can use wget to retrieve the latest release:

[root @erver:/usr/local/src]# wget https://downl oads. asteri sk. org/ pub/tel ephony/ asterisk/asterisk-14-current.tar.gz
--2017-04-28 15:45:36-- https://downl oads. asteri sk. org/ pub/tel ephony/ asteri sk/asterisk-14-current.tar.gz

Resol vi ng downl oads. asterisk.org (downl oads. asterisk.org)... 76.164.171.238

Connecting to downl oads. asteri sk.org (downl oads. asterisk.org)|76.164. 171. 238| : 443. .. connect ed.

HTTP request sent, awaiting response... 200 KX

Length: 40692588 (39M [application/x-gzip]

Saving to: ‘asterisk-14-current.tar.gz’

] 38.81M

asterisk-14-current.tar.gz 100%
3.32MB/ s in 12s

2017-04-28 15:45:47 (3.37 MB/s) - ‘asterisk-14-current.tar.gz’ saved [40692588/40692588]

Other Projects

libpri

The libpri library allows Asterisk to communicate with ISDN connections.You'll only need this if you are going to use DAHDI with ISDN interface hardware
(such as T1/E1/J1/BRI cards).

DAHDI

The DAHDI library allows Asterisk to communicate with analog and digital telephones and telephone lines, including connections to the Public Switched
Telephone Network, or PSTN.

DAHDI stands for Digium Asterisk Hardware Device Interface, and is a set of drivers and utilities for a number of analog and digital telephony cards, such
as those manufactured by Digium. The DAHDI drivers are independent of Asterisk, and can be used by other applications. DAHDI was previously called
Zaptel, as it evolved from the Zapata Telephony Project.

The DAHDI code can be downloaded as individual pieces (dahdi-linux for the DAHDI drivers, and dahdi-tools for the DAHDI utilities. They can also be
downloaded as a complete package called dahdi-linux-complete, which contains both the Linux drivers and the utilities.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 22

https://downloads.asterisk.org/pub/telephony/asterisk/
https://downloads.asterisk.org/pub/telephony/asterisk/releases/
https://downloads.asterisk.org/pub/telephony/asterisk
https://downloads.asterisk.org/pub/telephony/asterisk/asterisk-14-current.tar.gz
http://asterisk.org/downloads
https://www.gnu.org/software/wget/

You will only need to install DAHDI if you are going to utilize DAHDI compatible analog or digital telephony interface boards.

@ Why is DAHDI split into different pieces?

DAHDI has been split into two pieces (the Linux drivers and the tools) as third parties have begun porting the DAHDI drivers to other operating
systems, such as FreeBSD. Eventually, we may have dahdi-linux, dahdi-freebsd, and so on.

Download Locations

Project Location

Asterisk https://downloads.asterisk.org/pub/telephony/asterisk/asterisk-14-current.tar.gz

libpri https://downloads.asterisk.org/pub/telephony/libpri/libpri-current.tar.gz
dahdi-linux https://downloads.asterisk.org/pub/telephony/dahdi-linux/dahdi-linux-current.tar.gz
dahdi-tools

https://downloads.asterisk.org/pub/telephony/dahdi-tools/dahdi-tools-current.tar.gz

dahdi-complete ' https://downloads.asterisk.org/pub/telephony/dahdi-linux-complete/dahdi-linux-complete-current.tar.gz

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 23

https://downloads.asterisk.org/pub/telephony/asterisk/asterisk-14-current.tar.gz
https://downloads.asterisk.org/pub/telephony/libpri/libpri-current.tar.gz
https://downloads.asterisk.org/pub/telephony/dahdi-linux/dahdi-linux-current.tar.gz
https://downloads.asterisk.org/pub/telephony/dahdi-tools/dahdi-tools-current.tar.gz
https://downloads.asterisk.org/pub/telephony/dahdi-linux-complete/dahdi-linux-complete-current.tar.gz

Untarring the Source

When you download the source for libpri, DAHDI, and Asterisk you'll typically end up with files with a .tar.gz or .tgz file extension. These files are
affectionately known as tarballs. The name comes from the tar Unix utility, which stands for tape archive. A tarball is a collection of other files combined into
a single file for easy copying, and then often compressed with a utility such as GZip.

To extract the source code from the tarballs, we'll use the tar command. The commands below assume that you've downloaded the tarballs for libpri,
DAHDI, and Asterisk to the /usr/local/src directory on a Linux machine. (You'll probably need to be logged in as the root user to be able to write to that
directory.) We're also going to assume that you'll replace the letters X, Y, and Z with the actual version numbers from the tarballs you downloaded. Also
please note that the command prompt may be slightly different on your system than what we show here. Don't worry, the commands should work just the
same.

First, we'll change to the directory where we downloaded the source code:

[root @erver ~]# cd /usr/local/src

Next, let's extract the source code from each tarball using the tar command. The -zxvf parameters to the tar command tell it what we want to do with the
file. The z option tells the system to unzip the file before continuing, the x option tells it to extract the files from the tarball, the v option tells it to be verbose
(write out the name of every file as it's being extracted, and the f option tells the tar command that we're extracting the file from a tarball file, and not from a
tape.

[root @erver src]# tar -zxvf libpri-current.tar.gz
[root @erver src]# tar -zxvf dahdi-I|inux-conplete-2. X Y+2. X Y.tar.gz

[root @erver src]# tar -zxvf asterisk-14-current.tar.gz

You should now notice that a new sub-directory was created for each of the tarballs, each containing the extracted files from the corresponding tarball. We
can now compile and install each of the components.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 24

Building and Installing DAHDI
Overview

Let's install DAHDI!
On Linux, we will use the DAHDI-linux-complete tarball, which contains the DAHDI Linux drivers, DAHDI tools, and board firmware files. Again, we're
assuming that you've untarred the tarball in the / usr /1 ocal / sr c directory, and that you'll replace X and Y with the appropriate version numbers.

See What to Download? for more information on downloading the DAHDI tarballs.

Install DAHDI before libpri
libpri 1.4.13 and later source code depends on DAHDI include files. So, one must install DAHDI before installing libpri.

1 Don't need DAHDI?
- If you are not integrating with any traditional telephony equipment and you are not planning on using the MeetMe dialplan application, then you

do not have to install DAHDI or libpri in order to use Asterisk.

On This Page

® Overview

Starting with DAHDI-Linux-complete version 2.8.0+2.8.0, all files necessary to install DAHDI are available in the complete tarball. Therefore, all you need to
do to install DAHDI is:

[root @erver src]# cd dahdi-|inux-conplete-2.X Y+2.X. Y
[root @erver dahdi-|inux-conplete-2.X Y+2. X. Y] # nake

[root @erver dahdi-I|inux-conplete-2. X Y+2. X Y] # nake install

[root @erver dahdi-Iinux-conplete-2. X Y+2. X Y]# nake config

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 25

https://wiki/display/AST/Asterisk+11+Application_MeetMe

Building and Installing LibPRI

1 Haveyou installed DAHDI?
- Before you can build libpri, you'll need to Build and Install DAHDI.

As in the other build and install sections, we'll assume that you'll replace the letters X, Y, and Z with the actual version numbers from the tarballs you

downloaded.

[root @erver src]# cd libpri-1.X Y

This command changes directories to the libpri source directory.

[root @erver |ibpri-1.X Y]# make

This command compiles the libpri source code into a system library.

[root @erver libpri-1.X Y]# make install

This command installs the libpri library into the proper system library directory

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

26

PJSIP-pjproject
Overview

Asterisk currently contains two SIP stacks: the original chan_sip SIP channel driver which is a complete
standalone implementation, has been present in all previous releases of Asterisk and no longer receives
core support, and the newer chan_pjsip SIP stack that is based on Teluu's "pjproject” SIP stack. While
the pjproject stack allows us to move a significant amount of code out of Asterisk, it is a separate, actively
maintained, library that we integrate very tightly to. This presents challenges in making sure that the
versions of Asterisk and pjproject currently installed on a system are compatible. For this reason, we've
elected to "bundle" a stable, tested version of pjproject with the Asterisk distribution and integrate it into
the Asterisk build process. This does not prevent you from using an external pjproject installation but it will
not be supported by the Asterisk team. See PJSIP-pjproject below for more info.

Using the Bundled Version of pjproject

Beginning with Asterisk 13.8.0, a stable version of pjproject is included in Asterisk’s ./third-party directory
and is enabled with the - - wi t h- pj pr oj ect - bundl ed option to . / conf i gur e. Beginning with
Asterisk 15.0.0, it is enabled by default but can be disabled with the - - wi t hout - pj pr oj ect - bundl ed
optionto ./ confi gure.

The actual pjproject source code is NOT distributed with Asterisk. Instead the Asterisk build process
downloads the official pjproject tarball then patches, configures and builds pjproject when you build
Asterisk.

Why use the bundled version?

® Predictability: When built with the bundled pjproject, you're always certain of the version
you're running against, no matter where it's installed.

® Scalability: The default pjproject configuration is optimized for client applications. The
bundled version's configuration is optimized for server use.

® Usability: Several feature patches, which have been submitted upstream to pjproject but
not yet released, are usually included in the bundled version.

® Safety: If a security or critical issue is identified in pjproject, it can be patched and made
available with a new release of Asterisk instead of having to waiting for a new release of
piproject.

® Maintainability: You don't need to build and install separate packages.

® Supportability: When asking others for help, there's no question about which version of
pjproject you're using and what options it was compiled with.

® Debugability: The Asterisk DONT_OPTI M ZE and MALLOC_DEBUG compile flags, which
are essential for troubleshooting crashes and deadlocks, are automatically passed to the
pjproject build process.

® Compatibility: This is especially important from a development perspective because it
means we can be sure that new pjproject APIs that have been introduced or old ones that
have been deprecated, are handled and tested appropriately in Asterisk.

® Reliability: You can be sure that Asterisk was tested against the bundled version.

Usage

First, run . /contrib/scripts/install _prereq. Building the bundled pjproject requires the
python development libraries which install_prereq installs. All you have to do now is add the - - wi
t h- pj proj ect - bundl ed option to your Asterisk . / conf i gur e command line and remove any
other - - wi t h- pj pr oj ect option you may have specified.

$ cd /path/asterisk-source-dir

For Asterisk 13 and 14...

$./configure --wth-pjproject-bundl ed
For Asterisk 15+...

$./configure

$ make && nake install

The configure and make processes will download the correct version of pjproject, patch it,
configure it, build it, and finally link Asterisk to it statically. No changes in runtime configuration are
required. You can leave your system-installed version of pjproject in place if needed. Once
compiled with the - - wi t h- pj pr oj ect - bundl ed option, Asterisk will ignore any other installed
versions of pjproject.

Using the bundled version of pjproject doesn't necessarily mean you need internet access to
download the pjproject tarball every time you build. There are 2 ways to specify an alternate
location from which to retrieve it. First, assuming version 2.6 of pjproject is needed and / t mp/ dow
nl oads is the directory you're going to save to, download the following files to the local directory:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

On this Page

27

http://www.pjsip.org/

$ nkdir /tnp/ downl oads

$ wget - O /tnp/ downl oads/ pj proj ect-2.6.tar.bz2
http://ww. pj si p.org/rel ease/ 2. 6/ pj project-2.6.tar.bz2
$ wget - O /tnp/ downl oads/ pj proj ect-2.6.nmd5

http://ww. pjsip.org/rel ease/ 2. 6/ ND5SUM t xt

It's important that both files be named pj pr oj ect - <ver si on>. tar. bz2 and pj pr oj ect - <ver
si on>. nd5 respectively.

Now perform either of the following 2 steps:

a. Run ./configure with the - - wi t h- ext er nal s- cache=/t np/ downl oads option.
Jconfigure will check there first and only download if the files aren't already there
or the tarball checksum doesn't match what's in the md5 file. This is similar to the
--wi t h- sounds- cache option. BTW, the - - wi t h- ext er nal s- cache mecha
nism works for the precompiled codecs and the Digium Phone Module for Asterisk
as well. As of Asterisk 13.18, 14.7 and 15.0, the - - wi t h- downl oad- cache opt
ion can be used to specify both the externals and sounds cache directory.

b. Setthe PIJPRQJIECT _URL environment variable to any valid URL (including file://
URLSs) where . / conf i gur e can find the tarball and checksum files. The variable
can be set in your environment and exported or specified directly on the . / conf i
gur e command line. As of Asterisk 13.18, 14.7 and 15.0, the AST_DOMNLQAD C
ACHE environment variable can be used to specify both the externals and sounds
cache directory.

Building and Installing pjproject from Source

(D Installing pjproject from source or from packages is no longer a supported
configuration for Asterisk versions that contain the bundled version of pjproject. Report
s of pjproject-related Asterisk issues may only be made against the bundled version. The
bundled version inherits flags like DONT_OPTIMIZE and MALLOC_DEBUG from Asterisk
which allows us to accurately diagnose issues across both Asterisk and pjproject.

Because earlier releases of pjproject cannot build shared object libraries, some changes were required in
order to use it with Asterisk 12. As such, Asterisk requires pjproject version 2.4 or later (2.6 is
current). Alternatively, an Asterisk compatible version of pjproject is available on github , or - depending
on your Linux distribution - available as a package.

Earlier versions of pjproject downloaded from www.pjsip.org will not work with Asterisk 12 or greater.

@ If you have previously installed a version of pjproject, you must remove that version of
pjproject prior to building and installing the Asterisk 12+ compatible version of pjproject. See U
ninstalling pjproject for more information.

Downloading pjproject

Obtaining pjproject from Teluu:

Use wget to pull the latest version (currently 2.6) from www. pj si p. or g. Note that the instructions
assume that this is 2.6; for the latest version, refer to www. pj si p. or g:

wget http://ww. pjsip.org/rel ease/ 2.6/ pjproject-2.6.tar.bz2

tar -xjvf pjproject-2.6.tar.bz2

Obtaining the latest pjproject from the svn repo:

Use svn to install the latest version from www.pjsip.org.

svn co http://svn.pjsip.org/repos/pjproject/trunk/ pjproject-trunk

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

28

https://github.com/asterisk/pjproject
http://www.pjsip.org/
http://www.pjsip.org

Obtaining (old asterisk) pjproject from the github repo:

If you do not have git, install git on your local machine.

Downloading and installing gi t is beyond the scope of these instructions, but for
Debian/Ubuntu systems, it should be as simple as:

’ apt-get install git ‘

And for RedHat/CentOS systems:

’ yuminstall git ‘

Checkout the Asterisk 12-compatible pjproject from the Asterisk github repo:

git clone https://github. con asterisk/pjproject pjproject

And that's it!

Building and Installing pjproject

The first step in building and installing pjproject is configuring it using configure. For Asterisk, this
is arguably the most important step in this process. pjproject embeds a number of third party
libraries which can conflict with versions of those libraries that may already be installed on your
system. Asterisk will not use the embedded third party libraries within pjproject. As an example, if
you are going to build the res_srtp module in Asterisk, then you must specify "--with-external-srtp"
when configuring pjproject to point to an external srtp library.

Additionally, Asterisk REQUIRES two or three options to be passed to configure:

® --enabl e- shar ed - Instruct pjproject to build shared object libraries. Asterisk
will only use shared objects from pjproject.

® --prefix - Specify root install directory for pjproject. This will be dependent on
your distribution of Linux; typically this is / usr for most systems. The default is /
usr/ | ocal

® --1ibdir - Specify the installation location for object code libraries. This may
need to be setto / usr/ | i b64 for some 64-bit systems such as CentOS.

0]

Failure to build Asterisk with shared pjproject object libraries WILL result in seemingly
random crashes. For Asterisk to work properly with pjproject, pjproject MUST be built
with shared object libraries.

Compiler DEFINEs

® Users who expect to deal with Contact URIs longer than 256 characters or hostnames
longer than 128 characters should set PISI P_MAX_URL_SI ZE and PJ_MAX_HOSTNAM
E as appropriate.

® |Pv6 support in pjproject is, by default, disabled. To enable it, set PJ_HAS | PV6 t
ol.

® The default configuration of pjproject enables "assert" functions which can cause
Asterisk to crash unexpectedly. To disable the asserts, set NDEBUGto 1.

® The default number of TCP/TLS incoming connections allowed is 64. If you plan
on having more than that you'll need to set PJ_| OQUEUE_MAX_HANDLES to the
new limit.

With the exception of PJ_I OQUEUE_MAX_HANDLES, the options can be set in CFLAGS and passed
to configure as follows: './ conf i gur e CFLAGS="- DNDEBUG=1 - DPJ_HAS | PV6=1", etc. A
better way is to create or edit the pj | i b/ i ncl ude/ pj / confi g_si te. h file and set them all
there. You should use the bundled version of the confi g_si te. hfileint hi rd-party/ pj proj
ect/ pat ches as a starting point. Below is a copy of the file at the time of this writing.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

29

http://git-scm.com/
https://github.com/asterisk/pjproject

pjlib/include/pj/config_site.h

/*
* Asterisk config_site.h
*/

#i ncl ude <sys/sel ect. h>

/*

* Since both pjproject and asterisk source files wll
include config_site.h,

* we need to make sure that only pjproject source files
i ncl ude asterisk_nall oc_debug. h.

*/
#i f defined(MALLOC DEBUG) && !defi ned(_ASTERI SK_ASTMM H)
#i ncl ude "asterisk_mall oc_debug. h"
#endi f

/*

* Defining PIMEDI A HAS_SRTP to O does NOT disabl e
Asterisk's ability to use srtp.

* |t only disables the pjnedia srtp transport which
Asteri sk doesn't use.

* The reason for the disable is that while Asterisk works
fine with older libsrtp

* versions, newer versions of pjproject won't conpile with
t hem

*/

#define PIMEDI A HAS SRTP 0

#define PJ_HAS | PV6 1

#defi ne NDEBUG 1

#defi ne PJ_MAX HOSTNAME (256)

#define PJSIP_MAX URL_SI ZE (512)

#i fdef PJ_HAS LI NUX_EPQOLL

#define PJ_I OQUEUE_MAX_ HANDLES (5000)

#el se

#define PJ_| OQUEUE_MAX HANDLES (FD_SETSI ZE)
#endi f

#define PJ_| OQUEUE_HAS SAFE UNREG 1

#define PJ_| OQUEUE_MAX_ EVENTS I N_SINGLE_POLL (16)

#define PJ_SCANNER USE BITWSE 0
#define PJ_OS HAS CHECK STACK 0

#i f ndef PJ_LOG MAX LEVEL
#define PJ_LOG MAX_LEVEL 6
#endi f

#define PJ_ENABLE EXTRA CHECK 1

#define PJSI P_MAX_TSX_COUNT ((64*1024) - 1)
#define PJSIP_MAX DI ALOG COUNT ((64*1024)-1)
#define PJSIP_UDP_SO SNDBUF_SIZE (512*1024)
#define PJSIP_UDP_SO RCVBUF_SIZE (512%1024)

#defi ne PJ_DEBUG 0
#defi ne PJSI P_SAFE_MODULE 0
#define PJ_HAS_STRI CMP_ALNUM 0

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

/ *

* Do not ever enable PJ_HASH USE OMN_TOLOAER because the
algorithmis

* jnconsistently used when cal cul ating the hash val ue and
doesn' t

* convert the sane characters as pj_tol ower()/tol ower().
Thus you

* can get different hash values if the string hashed has
certain

* characters init. (AsCll '@, '[', "\\', ']', '"~", and
")

*/
#undef PJ_HASH USE_OM_ TOLOWER

/*

It is inperative that PJSI P_UNESCAPE | N PLACE renmain 0 or
undef i ned.

Enabling it will result in SEGFAULTS when URI s containing
escape sequences are encountered.

*
#undef PJSI P_UNESCAPE_| N_PLACE
#define PJSI P_MAX_PKT_LEN 32000

#undef PJ_TODO
#defi ne PJ_TODQ(x)

/* Defaults too | ow for WbRTC */

#define PJ_| CE_ MAX_CAND 32

#define PJ_I CE_MAX _CHECKS (PJ_I CE_MAX_CAND *
PJ_| CE_MAX_CAND)

/* Increase limts to allow nore formats */

#defi ne PIJVEDI A MAX_SDP_FMT 64

#defi ne PJVEDI A_MAX_SDP_BANDW 4

#def i ne PJMVEDI A MAX_SDP_ATTR (PJMEDI A MAX_SDP_FMT*2 +
4)

#defi ne PJVEDI A MAX_SDP_MEDIA 16

/*

* Turn off the periodic sending of CRLNCRLN. Default is
on (90 seconds),

* which conflicts with the gl obal section's
keep_alive_interval option in

* pjsip.conf.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

31

x|
#define PJSIP_TCP_KEEP ALIVE_INTERVAL 0
#define PJSIP_TLS KEEP ALIVE INTERVAL 0

Other common configure options needed for pjproject are listed below:

Library Configure option Notes

libspeex shared objects --w t h-external - speex | Make sure that the library
development headers are
accessible from pjproject.
The CFLAGS and
LDFLAGS environment
variables may be used to
set the include/lib paths.

libsrtp shared objects --with-external -srtp Make sure that the library
development headers are
accessible from pjproject.
The CFLAGS and
LDFLAGS environment
variables may be used to
set the include/lib paths.

GSM codec --w th-external -gsm Make sure that the library
development headers are
accessible from pjproject.
The CFLAGS and
LDFLAGS environment
variables may be used to
set the include/lib paths.

Disable sound - -di sabl e- sound Let Asterisk perform sound
manipulations.

Disable resampling --di sabl e-resanpl e Let Asterisk perform
resample operations.

Disable video - -di sabl e-vi deo Disable video support in
pjproject's media libraries.
This is not used by Asterisk.

Disable AMR --disable-opencore-amr Disable AMR codec
support. This is not used by
Asterisk

These are some of the more common options used to disable third party libraries in pjproject.
However, other options may be needed depending on your system - see configure --help fo
r a full list of configure options you can pass to pjproject.

a.
Now that you understand the pjproject configure options available, change directories to
the pjproject source directory:

cd pj project

b. In the pjproject source directory, run the configure script with the options needed for
your system:

./configure --prefix=/usr --enabl e-shared --disabl e-sound
--di sabl e-resanpl e --di sabl e-vi deo --di sabl e-opencor e-anr
CFLAGS=' - Q2 - DNDEBUG

A few recommended options are shown. That includes setting a couple important
CFLAGS, -02 for common optimizations and -DNDEBUG to disable debugging code
and assertions.

c. Build pjproject:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

http://www.speex.org/
https://github.com/cisco/libsrtp

make dep
make

d. Install pjproject

| # make install |

e. Update shared library links.

| # ldconfig |

f. Verify that pjproject has been installed in the target location by looking for, and finding
the various pjproject modules:

ldconfig -p | grep pj

i bpj sua.so (libc6,x86-64) => /usr/lib/libpjsua.so

|'i bpjsip.so (libc6, x86-64) => [usr/lib/libpjsip.so

| i bpj si p-ua.so (libc6,x86-64) => [usr/lib/libpjsip-ua.so

|'i bpj si p-sinple.so (libc6,x86-64) => /usr/|ib/libpjsip-sinple.so

i bpjnath.so (libc6, x86-64) => /usr/lib/libpjnath.so

|'i bpj medi a. so (libc6, x86-64) => /usr/|ib/libpjnedia.so

| i bpj medi a- vi deodev. so (libc6, x86-64) =>
Jusr/1ib/libpjmedia-vi deodev. so

| i bpj medi a- codec.so (libc6,x86-64) => /usr/lib/libpjnedia-codec.so

|'i bpj medi a- audi odev. so (libc6, x86-64) =>
/usr/1ib/libpjmedia-audi odev. so

libpjlib-util.so (libc6,x86-64) => /usr/lib/libpjlib-util.so

libpj.so (libc6, x86-64) => /usr/lib/libpj.so

g. Finally, verify that Asterisk detects the pjproject libraries. In your Asterisk source
directory:

./configure
make nmenusel ect

h. Browse to the Resource Modules category and verify that the r es_pj si p modul
es are enabled:

| Asterisk Module and Build Option Selection ———————————

PBX Modules [*] res_pjsip
[*] res_pjsip_acl

Test Modules [*] res_pjsip_authenticator_di
Compiler Flags - Development [*] res_pjsip_caller_id
Voicemail Build Options [*] res_pjsip_diversion
Utilities [*] res_pjsip_dtmf_info
AGL Samples [*] res_pjsip_endpoint_identif
Module Embedding [*] res_pjsip_endpoint_identif
Core Sound Packages [*] res_pjsip_endpoint_identif

- S

— R R R R

Basic SIP resource

Depends on: pjproject(E), res_s{pmmemmsm—m |
Can use: N/A | save & Exit |
Conflicts with: N/A —_—

Support Level: core

<ENTER> toggles selection | <F12> saves & exits | <ESC> exits without save

i. You're all done! Now, build and install Asterisk as your normally would.

1 Ifyou need pjsua (for the testsuite, for example), then you may also need to take a look at Inst
alling the Asterisk Test Suite#pjsua_installationPJSUAInstallation to set that up externally as
well.

Troubleshooting

First, if you're using Asterisk 13.8.0 or greater, consider switching to the Bundled Version of
pjproject

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 33

https://wiki/display/AST/Installing+the+Asterisk+Test+Suite#InstallingtheAsteriskTestSuite-pjsua_installationPJSUAInstallation
https://wiki/display/AST/Installing+the+Asterisk+Test+Suite#InstallingtheAsteriskTestSuite-pjsua_installationPJSUAInstallation

Asterisk fails to detect pjproject libraries

After building and installing pjproject, Asterisk fails to detect any of the libraries - the various
res_pjsip components cannot be selected in Asterisk's menuselect

Solution

Verify that Asterisk's config.log shows the following:

configure: 23029: checki ng for PIJPRQJECT

configure: 23036: $PKG CONFIG --exists --print-errors "libpjproject"
Package |ibpjproject was not found in the pkg-config search path.
Per haps you should add the directory containing "|ibpjproject.pc’
to the PKG CONFI G PATH environnent variable

No package 'Iibpjproject' found

a. Make sure you have pkg- confi g installed on your system.

b. pjproject will install the package config file in / usr/ | i b/ pkgconfi g . Some
distributions, notably Fedora, will instead look for the library in / usr/1i b64 .
Update your PKG_CONFI G_PATH environment variable with / usr/ | i b/ pkgconf
i g and re-run Asterisk's conf i gur e script.

pjproject fails to build: errors related to opencore_amr

When building pjproject, errors about opencore_amr are displayed, e.g.:

out put / pj nedi a- codec- x86_64- unknown- | i nux- gnu/ opencor e_anr . o: (. r odat a+0x60) :

mul tiple definition of "pjnmedia_codec_anrnb_franel enbits'

out put / pj nedi a- codec- x86_64- unknown- | i nux- gnu/ opencor e_ant. o: (. rodat a+0x60): first
defined here

out put / pj nedi a- codec- x86_64- unknown- | i nux- gnu/ opencor e_ant . o:
mul tiple definition of " pjnedia_codec_anrnb_franel en'

out put / pj nedi a- codec- x86_64- unknown- | i nux- gnu/ opencor e_anr . o:
defined here

out put / pj nedi a- codec- x86_64- unknown- | i nux- gnu/ opencor e_anr . o:
mul tiple definition of "pjnedia_codec_anrwb_franel enbits'

out put / pj nedi a- codec- x86_64- unknown- | i nux- gnu/ opencor e_ant . o:
defined here

out put / pj nedi a- codec- x86_64- unknown- | i nux- gnu/ opencor e_ant . o:
mul tiple definition of " pjnedia_codec_anrwb_franel en'

out put / pj nedi a- codec- x86_64- unknown- | i nux- gnu/ opencor e_ant . o:
defined here

. rodat a+0x80) :

.rodat a+0x80): first

. rodat a+0x20) :

.rodat a+0x20): first

. rodat a+0x40) :

.rodat a+0x40): first

Solution

You already have the AMR codec installed. Run confi gure with the --di sabl e- opencore-a
nT option specified.

pjproject fails to build: video linker errors

When building pjproject, linker errors referring to various video methods are displayed, e.g.:

/' home/ nj or dan/ pr oj ect s/ pj proj ect/ pj medi a/ | i b/ | i bpj nedi a- vi deodev. so: undefi ned
reference to “pjnedia_format_init_video

/ home/ nj or dan/ pr oj ect s/ pj proj ect/ pj medi a/ i b/ i bpj medi a. so: undefined reference to
“pj medi a_vi deo_f or mat _ngr _i nst ance’

/' home/ nj or dan/ pr oj ect s/ pj proj ect/ pj medi a/ | i b/ | i bpj nedi a- vi deodev. so: undefi ned
reference to “pjnedia_format_get_vi deo_fornat_detail’

/' home/ nj or dan/ pr oj ect s/ pj proj ect/ pj medi a/ | i b/ | i bpj nedi a- vi deodev. so: undefi ned
reference to " pjnedia_get_video_format_info'

Solution

Run confi gure with either or both - - di sabl e-vi deo or --di sabl e-v4l 2

Idconfig fails to display pjproject libraries

After building pjproject, the dump provided by | dconfi g -p doesn't display any libraries.

Solution

Run I dconfi g to re-configure dynamic linker run-time bindings. This will need to be run with
super user permissions.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

pjproject fails to build on Raspberry Pi

piproject/Asterisk fails to compile on your Raspberry Pi (raspbian) due to pjproject configure scripts
not detecting endianness:

lusr/include/pj/config.h:243:6: error: #error Endianness nust be declared for this
processor
In file included from/usr/include/pj/types.h:33:0,

from /usr/include/ pjsip/sip_config.h:27,

from /usr/include/ pjsip/sip_types.h: 34,

from /usr/include/pjsip.h:24,

fromconftest.c:290:
/usr/include/pj/config.h:1161:4: error: #error "PJ_IS_LITTLE ENDI AN i s not
defined!"
/usr/include/ pj/config.h:1165:4: error: #error "PJ_IS_BIG END AN is not defined!"

Solution

a. Edit/ usr/incl ude/ pj/confi g. h (using the editor of your choice)
b. Replace this code:

/*
* ARM bi-endian, so raise error if endianness is not
configured
*/
undef PJ_M ARW4
define PJ_M ARWA4 1
define PJ_M NAME "arnmv4"
define PJ_HAS PENTI UM 0
if 'PJ_IS LITTLE ENDI AN && ! PJ_I S Bl G_ENDI AN
error Endi anness nust be declared for this
processor
endi f

With this:

/*
* ARM bi-endian, so raise error if endi anness i s not
configured

*/
undef PJ_M ARWA4
define PJ_M ARW4 1
define PJ_M NAME "arnmv4"
define PJ_HAS_PENTI UM 0
define PJ_IS_LITTLE_ENDIAN 1
define PJ_I'S Bl G ENDI AN 0

Then recompile. This workaround was taken from issue ASTERISK-23315.

Uninstalling a Previous Version of pjproject

Typically, other versions of pjproject will be installed as static libraries. These libraries are not
compatible with Asterisk and can confuse the build process for Asterisk 12. As such, any static
libraries must be removed prior to installing the compatible version of pjproject.

pjproject provides an uni nst al | make target that will remove previous installations. It can be
called from the pjproject source directory like:

make uninstall

If you don't have an "uninstall" make target, you may need to fetch and merge the latest pjproject
from https://github.com/asterisk/pjproject

Alternatively, the following should also remove all previously installed static libraries:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

35

https://issues.asterisk.org/jira/browse/ASTERISK-23315
https://github.com/asterisk/pjproject

#rm-f fusr/lib/libpj*.a /usr/lib/libmlenage*.a
lusr/1iblpkgconfig/libpjproject.pc

Finally, you will need to update shared library links:

I dconfig ‘

If you want to run a sanity check, you can verify that pjproject has been uninstalled by ensuring no
pjproject modules remain on the system:

ldconfig -p | grep pj ‘

If running the above command yields no results, that's it! You have successfully
uninstalled pjproject from your system. If there are results, you may need to remove other
pjproject-related items from /usr/lib as well.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

36

Checking Asterisk Requirements
Configuring Asterisk

Now it's time to compile and install Asterisk. Let's change to the directory which contains the Asterisk source code.

‘ [root @erver]# cd /usr/local/src/asterisk-14.X. Y ‘

Next, we'll run a command called ./configure, which will perform a number of checks on the operating system, and get the Asterisk code ready to compile
on this particular server.

‘ [root @erver asterisk-14.X. Y]# ./configure ‘

This will run for a couple of minutes, and warn you of any missing system libraries or other dependencies. Unless you've installed all of the System
Requirements for your version of Asterisk, the configure script is likely to fail. If that happens, resolve the missing dependency manually, or use the install_
prereq script to resolve all of the dependencies on your system.

Once a dependency is resolved, run configure again to make sure the missing dependency is fixed.

@ If you have many missing dependencies, you may find yourself running configure a lot. If that is the case, you'll do yourself a favour by checking
the System Requirements or installing all dependencies via the i nst al | _pr er eq script.

On this Page

® Configuring Asterisk
® Using install_prereq

Upon successful completion of ./configure, you should see a message that looks similar to the one shown below. (Obviously, your host CPU type may be
different than the below.)

. $EPESFSSISSSS=. .
. $7$7. . L7887
L $7$7. . LT$$7: .
.88 . ,$7.7
. $7. 7$3$$$. $$77
.. $3. $$3$$. $8$7
L7 L2 $$$38 . 2. 7$$3.
$. 8. . 3387, $33$7 . 7338, . $38.
L777. . SESFESTT7 ST 7$$S$$7. $$3,
$$$~ L TEEIEEISESESS7. . $$8.
. $87 L T$$3$$$$7: 2$$3.
$$$ 27335335833 $I . $8$7
$$$. T$$3SSISSSES$SSS 1 588,
$$$ $EISE7SEISS$SESSS . $$8.
$$$ 3 T7H$$7 . $$3% . $$8.
$$3$ $$$$7 . $$8.
7$$$7 7$$$$ 7$$$
$$$$S $$$
$$$$7. $$ (™™
$E3$8$S. L T783388$ 3%
$SEFESISSS7SSFSS$ES. $$3$8S
BEUBRUERLERELRRLE
configure: Package configured for:
configure: OS type : |inux-gnu
configure: Host CPU : x86_64
configure: build-cpu:vendor:os: x86_64 : unknown : |inux-gnu :
configure: host-cpu:vendor:os: x86_64 : unknown : |inux-gnu :

Cached Data
@ The ./configure command caches certain data to speed things up if it's invoked multiple times. To clear all the cached data, you can use the
following command to completely clear out any cached data from the Asterisk build system.

‘ [root @erver asterisk-14.X. Y]# make distcl ean

You can then re-run ./configure.

Using install_prereq
The install_prereq script is included with every release of Asterisk in the cont ri b/ scri pt s subdirectory. The script has the following options:

® test - print only the libraries to be installed.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 37

install - install package dependencies only. Depending on your distribution of Linux, version of Asterisk, and capabilities you wish to use,

this may be sufficient.
install-unpacakged - install dependencies that don't have packages but only have tarballs. You may need these dependencies for

certain capabilities in Asterisk.

@ You should always use your operating system's package management tools to ensure that your system is running the latest software before run
ning i nstal | _prer eq. Ubuntu 14's libsnmp-dev package, for instance, has an issue where it will attempt to remove critical system packages if

the system isn't updated before an attempt is made to install that package.

[root @erver asterisk-14.X Y]# cd contrib/scripts

[root @erver asterisk-14.X Y/ contrib/scripts]# ./install_prereq install

[root @erver asterisk-14.X Y/ contrib/scripts]# ./install_prereq install-unpackaged

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 38

Using Menuselect to Select Asterisk Options
Using Menuselect

The next step in the build process is to tell Asterisk which modules to compile and install, as well as set various compiler options. These settings are all
controlled via a menu-driven system called Menuselect. To access the Menuselect system, type:

[root @erver asterisk-14.X Y]# nake nenusel ect

1 Terminal Window
Your terminal window size must be at least eighty characters wide and twenty-seven lines high, or Menuselect will not work. Instead, you'll get
an error message stating

Term nal nust be at |least 80 x 27.

The Menuselect menu should look like the screen-shot below. On the left-hand side, you have a list of categories, such as Applications, Channel Drivers
, and PBX Modules. On the right-hand side, you'll see a list of modules that correspond with the select category. At the bottom of the screen you'll see two
buttons. You can use the Tab key to cycle between the various sections, and press the Enter key to select or unselect a particular module. If you see [*] ne
xt to a module name, it signifies that the module has been selected. If you see *XXX next to a module name, it signifies that the select module cannot be
built, as one of its dependencies is missing. In that case, you can look at the bottom of the screen for the line labeled Depends upon: for a description of
the missing dependency.

On this Page

® Using Menuselect

® Module Support Levels
® Menuselect Categories
® Controlling Menuselect

® Listing Options

® Enabling an Option

® Disabling an Option

® Enabling a Category

Asterisk Module and Builld Option Selection

Call Detall Recording
Channel Drivers

Codec Translators
Format Interpreters
Dialplan Functions
PEX Modules

Resource Modules

Test Modules

app_alarmreceliver
app_amd
app_authenticate
app_cdr
app_chanisavail
app_channelredirect
app_chanspy
app_controlplayback

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

— SESEIrEE I m

Asterisk ADSI Programming Application

Depends on: res_adsi(M)
Can use: N/A
Conflicts with: N/A

<ENTER> toggles selection | <Fl2> saves & exits | <E5C> exits without save

When you're first learning your way around Asterisk on a test system, you'll probably want to stick with the default settings in Menuselect. If you're building
a production system, however, you may not wish to build all of the various modules, and instead only build the modules that your system is using.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 39

When you are finished selecting the modules and options you'd like in Menuselect, press F12 to save and exit, or highlight the Save and Exit button and

press enter.

Module Support Levels

Menuselect will also show the support level for a selected module or build option. The support level will always be one of cor e, ext ended, or depr ecat e
d. For more information on these support levels, see Asterisk Module Support States.

Menuselect Categories

Category

Add-ons

Applications

Bridging
Modules

Call Detail
Recording

Channel
Event

Logging

Channel
Drivers

Codec Trans
lators

Format
Interpreters

Dialplan
Functions

PBX
Modules

Resource
Modules

Test
Modules

Compiler
Flags -
Development

Voicemail
Build
Options

Utilities

AGI Samples

Description

Modules that link with libraries that have licensing restrictions beyond what is allowed via the GPLv2 and Asterisk's dual
licensing model. See README-addons.txt, delivered with Asterisk, for more information.

Modules that provide call functionality to the system. An application might answer a call, play a sound prompt, hang up a call, and so
forth.

Modules that provide various bridge mixing technologies and other bridge related functionality.
Modules that provide Call Detail Record (CDR) drivers for various permanent storage backends.

Modules that provide Channel Event Logging (CEL) drivers for various permanent storage backends.

Modules that provide communications with devices outside of Asterisk, and translate that particular signalling or protocol to the core.
Modules that provide encoding/decoding for audio or video. Typically codecs are used to encode media so that it takes less bandwidth.
Modules used to save media to disk in a particular file format, and to convert those files back to media streams on the network.

Modules that are used to retrieve or set various settings on a call. A function might be used to set the Caller ID on an outbound call, for
example.

Modules that implement dialplan functionality or enhancements.

Modules that provide additional resources to Asterisk. This can includes music on hold, calendar integration, database integration,
various protocol stacks, etc.

Unit test modules. These are typically only available when Asterisk has:
® Been configured with the - - enabl e- dev- nbde setting

® The TEST_FRAMEWORK compilation option has been selected in Compiler Flags - Development

Various compilation flags that alter Asterisk's behaviour. These flags are often useful in debugging Asterisk, or obtaining information for
Asterisk developers.

©

Easier Debugging of Asterisk Crashes
As much as we may hate to admit it, Asterisk may sometimes have problems.

If you're finding that Asterisk is crashing on you, there's are settings under Compiler Flags - Development that are critical

for developers attempting to assist you. For detailed instructions on enabling these settings, see Getting a Backtrace
(Asterisk versions < 13.14.0 and 14.3.0).

Compilation flags that enable different Voicemail (via app_voi cenai |) storage backends.

Various utilities for Asterisk. These include Asterisk Database upgrade utilities, Asterisk monitoring utilities, and other
potentially useful tools.

Sample AGI applications.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 40

http://svn.asterisk.org/svn/asterisk/trunk/README-addons.txt
https://wiki/pages/viewpage.action?pageId=5243139
https://wiki/pages/viewpage.action?pageId=5243139

Module Emb = Compilation flags to enable embedding of Asterisk dynamic modules into the Asterisk binary.

edding

Core Sound Core sounds used by Asterisk. Different sound formats can be selected in this menu; when Asterisk is installed, these sounds
Packages will be downloaded and installed.

Music On Sample Music on Hold media used by Asterisk. Different formats can be selected in this menu; when Asterisk is installed, the
Hold File various media samples will be downloaded and installed.

Packages

Extras Extra sounds that can be used by Asterisk integrators. Different sound formats can be selected in this menu; when Asterisk is
Sound installed, these sounds will be downloaded and installed.

Packages

Controlling Menuselect

Options in Menuselect can be controlled from the command line. Menuselect can be built without invoking the user interface via the nenusel ect . makeo

pt s target:

[root @erver asterisk-14.X Y]# make nenusel ect. makeopts

Available options can be viewed using the - - hel p command line parameter:

[root @erver asterisk-14. X Y]# nenusel ect/nenusel ect --help

Some of the more common options are shown below.

@ Menuselect Output

Asterisk expects all Menuselect options to be written to the menuselect.makeopts file. When enabling/disabling Menuselect options via the

command line, your output should typically be to that file.

Listing Options

To list all options in Menuselect, use the - - | i st - opti ons command line parameter:

[root @erver asterisk-14. X Y]# nmenusel ect/ nenusel ect --list-options

To list only the categories, use the - - cat egory-1i st command line parameter:

[root @erver asterisk-14. X Y]# nenusel ect/ nenusel ect --category-|ist
MENUSELECT_ADDONS
MENUSELECT_APPS
MENUSELECT_BRI DGES
MENUSELECT_CDR
MENUSELECT_CEL
MENUSELECT_CHANNELS
MENUSELECT_CODECS
MENUSELECT_FORVATS
MENUSELECT_FUNCS
MENUSELECT_PBX
MENUSELECT_RES
MENUSELECT_TESTS
MENUSELECT_CFLAGS
MENUSELECT_OPTS_app_voi cenai |
MENUSELECT_UTI LS
MENUSELECT_AG S
MENUSELECT_EMBED
MENUSELECT_CORE_SOUNDS
MENUSELECT_MOH
MENUSELECT_EXTRA_SOUNDS

To list the options in a category, use the - - | i st - cat egor y command line parameter:
[root @erver asterisk-14.X. Y]# nmenusel ect/nmenusel ect --|ist-category MENUSELECT_OPTS_ app_voi cemai |
+ FI LE_STORAGE
- ODBC_STORAGE
- | MAP_STORAGE

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

41

Enabling an Option

To enable an option in Menuselect, use the - - enabl e command line parameter:

‘ [root @erver asterisk-14.X Y]# nenusel ect/ nenusel ect --enabl e | MAP_STORAGE nenusel ect. makeopt s

@ Chaining Options
Multiple options can be chained together:

| [root @erver asterisk-14.X Y]# nmenusel ect/ menusel ect --enable app_voicemail --enable | MAP_STORAGE nenusel ect . makeopt s

Disabling an Option

To disable an option in Menuselect, use the - - di sabl e command line parameter:

[root @erver asterisk-14.X. Y]# nmenusel ect/ menusel ect --di sabl e app_voicenail nenusel ect. nakeopts

Enabling a Category

An entire category can be enabled in Menuselect using the - - enabl e- cat egor y command line parameter:

[root @erver asterisk-14. X Y]# nenusel ect/ nenusel ect --enabl e-category MENUSELECT_ADDONS nenusel ect. nekeopt s

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

42

Building and Installing Asterisk
Build and Install Instructions

Now we can compile and install Asterisk. To compile Asterisk, simply type make at the Linux command line.

‘ [root @erver asterisk-14.X. Y]# make

The compiling step will take several minutes, and you'll see the various file names scroll by as they are being compiled. Once Asterisk has finished
compiling, you'll see a message that looks like:

R Asterisk Build Conplete --------- +
+ Asterisk has successfully been built, and +
+ can be installed by running: +
+ +
+ make install +
i +
R Asterisk Build Conplete --------- +

On this Page

® Build and Install Instructions
® Advanced Build and Install Options
® Customizing the Build/Installation
Passing compilation and linkage flags to gcc
Debugging compilation
Building for non-native architectures
Installing to a custom directory
® Other Make Targets

As the message above suggests, our next step is to install the compiled Asterisk program and modules. To do this, use the make install command.

[root @erver asterisk-14.X. Y]# make install

When finished, Asterisk will display the following warning:

- Asterisk Installation Conplete ------- +
YOU MUST READ THE SECURI TY DOCUMENT
Asterisk has successfully been installed.
If you would like to install the sanple

configuration files (overwiting any

existing config files), run:

neke sanpl es

EE T T N
P T S e S

o+
&
23
]
=
=
=)
n
@
=
2
=
=3
g
3
o
[v]
4

(D Security Precautions
As the message above suggests, we very strongly recommend that you read the security documentation before continuing with your Asterisk
installation. Failure to read and follow the security documentation can leave your system vulnerable to a number of security issues, including toll
fraud.

Advanced Build and Install Options

Customizing the Build/Installation

In some environments, it may be necessary or useful to modify parts of the build or installation process. Some common scenarios are listed here

Passing compilation and linkage flags to gcc

Specific flags can be passed to gcc when Asterisk is configured, using the CFLAGS and LDFLAGS environment variables:

[root @erver asterisk-14.X Y]# ./configure CFLAGS=-pg LDFLAGS=-pg

Debugging compilation

To see all of the flags passed to gcc, build using the NO SY_BUI LD setting set to YES:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 43

[root @erver asterisk-14.X. Y]# make NO SY_BU LD=yes

Building for non-native architectures

Generally, Asterisk attempts to optimize itself for the machine on which it is built on. On some virtual machines with virtual CPU architectures, the defaults
chosen by Asterisk's compilation options will cause Asterisk to build but fail to run. To disable native architecture support, disable the BUl LD_NATI VE optio
n in menuselect:

[root @erver asterisk-14. X Y]# nenusel ect/ nenusel ect --disable BU LD NATI VE nenusel ect. makeopts

[root @erver asterisk-14. X Y]# nake

Installing to a custom directory

While there are multiple ways to sandbox an instance of Asterisk, the preferred mechanism is to use the - - pr ef i x option with the conf i gur e script:

[root @erver asterisk-14.X Y]# ./configure --prefix=/usr/local/ny_special_folder

Note that the default value for prefi x is/ usr/ | ocal .
Other Make Targets

Target Description
Executing make with no target is equivalent to the al | target.
all Compiles everything everything selected through the conf i gur e and nmenusel ect scripts.

full This is equivalent to make or make al |, save that it will perform a more thorough investigation of the source code for documentation.
This is needed to generate AMI event documentation. Note that your system must have Python in order for this make target to succeed.

1 Version Notice
This build target is only available in Asterisk 11 and later versions.

install Installs Asterisk, building Asterisk if it has not already been built. In general, this should be executed after Asterisk has
successfully compiled.
uninstall Removes Asterisk binaries, sounds, man pages, headers, modules and firmware builds from the system.

uninstall-all Same as the uni nst al | target, but additionally removes configuration, spool directories and logs. All traces of Asterisk.

1 As just noted, this will remove all Asterisk configuration from your system. Do not execute uni nstal | - al | unless you are
sure that is what you want to do.
clean Remove all files generated by make.
dist-clean Remove pretty much all files generated by make and configure.
samples Install all sample configuration files (.conf files) to / et c/ ast eri sk/ . Overwrites existing config files.
config Install init scripts (startup scripts) on your system.

progdocs Uses doxygen to locally generate HTML development documentation from the source code. Generated in the doc/ subdirector
y of the source; see doc/ i ndex. ht nl .

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 44

https://wiki/display/AST/AMI+Event+Documentation

Installing Sample Files

@ Asterisk Sample Configs: not a sample PBX configuration
For many of the sample configuration files that make samples installs, the configuration contains more than just an example configuration. The
sample configuration files historically were used predominately for documentation of available options. As such, they contain many examples of
configuring Asterisk that may not be ideal for standard deployments.

While installing the sample configuration files may be a good starting point for some people, they should not be viewed as recommended
configuration for an Asterisk system.

To install a set of sample configuration files for Asterisk, type:

[root @erver asterisk-14.X Y]# make sanpl es

Any existing sample files which have been modified will be given a .old file extension. For example, if you had an existing file named extensions.conf, it
would be renamed to extensions.conf.old and the sample dialplan would be installed as extensions.conf.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 45

Installing Initialization Scripts

Now that you have Asterisk compiled and installed, the last step is to install the initialization script, or i ni t scri pt . This script starts Asterisk when your
server starts, will monitor the Asterisk process in case anything bad happens to it, and can be used to stop or restart Asterisk as well. To install the i ni t sc

ri pt, use the make config command.

‘ [root @erver asterisk-14.X. Y]# nake config ‘

As your Asterisk system runs, it will generate lodfiles. It is recommended to install the | ogr ot at i on script in order to compress and rotate those files, to
save disk space and to make searching them or cataloguing them easier. To do this, use the make install-logrotate command.

‘ [root @erver asterisk-14.X. Y]# nake install-|ogrotate ‘

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 46

Validating Your Installation

Before continuing on, let's check a few things to make sure your system is in good working order. First, let's make sure the DAHDI drivers are loaded. You
can use the Ismod under Linux to list all of the loaded kernel modules, and the grep command to filter the input and only show the modules that have dah
di in their name.

‘ [root @erver asterisk-14.X. Y]# |snod | grep dahdi ‘

If the command returns nothing, then DAHDI has not been started. Start DAHDI by running:

‘ [root @erver asterisk-14.X Y]# /etc/init.d/ dadhi start ‘

@ Different Methods for Starting Initscripts
Many Linux distributions have different methods for starting initscripts. On most Red Hat based distributions (such as Red Hat Enterprise Linux,

Fedora, and CentOS) you can run:

| [root @erver asterisk-14.X. Y]# service dahdi start |

Distributions based on Debian (such as Ubuntu) have a similar command, though it's not commonly used:

| [root @erver asterisk-14.X Y]# invoke-rc.d dahdi start |

If you have DAHDI running, the output of Ismod | grep dahdi should look something like the output below. (The exact details may be different, depending
on which DAHDI modules have been built, and so forth.)

[root @erver asterisk-14.X. Y]# |snod | grep dahdi

dahdi _transcode 7928 1 wctc4xxp

dahdi _voi cebus 40464 2 wct dnR4xxp, wet el2xp

dahdi 196544 12 wct dnR4xxp, wet ellxp, wet 1xxp, wet e12xp, wet 4xxp
crc_ccitt 2096 1 dahdi

Now that DAHDI is running, you can run dahdi_hardware to list any DAHDI-compatible devices in your system. You can also run the dahdi_tool utility to
show the various DAHDI-compatible devices, and their current state.

To check if Asterisk is running, you can use the Asterisk i ni t scri pt.

[root @erver asterisk-14.X Y]# /etc/init.d/ asterisk status
asterisk is stopped

To start Asterisk, we'll use the i ni t scri pt again, this time giving it the start action:

[root @erver asterisk-14.X Y]# /etc/init.d/asterisk start
Starting asterisk:

When Asterisk starts, it runs as a background service (or daemon), so you typically won't see any response on the command line. We can check the status
of Asterisk and see that it's running using the command below. (The process identifier, or pid, will obviously be different on your system.)

[root @erver asterisk-14.X Y]# /etc/init.d/ asterisk status
asterisk (pid 32117) is running...

And there you have it! You've compiled and installed Asterisk, DAHDI, and libpri from source code.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. a7

libsrtp

libsrtp is a critical part of providing secure calling with Asterisk but there are some very old versions floating around and even still being made available by
major distributions. It's also a library that's used by both Asterisk itself and pjproject. To make matters even worse, pjproject bundles a version with it's
tarball.

As of November 2017, the minimum supported version of libsrtp supported by Asterisk is 1.5.4. Earlier versions may allow Asterisk to compile but there
were enough issues that earlier versions MAY CRASH, will NOT BE SUPPORTED and are used at your own risk.

Both Asterisk and pjproect do support libsrtp 2.x but we've not tested extensively with it so your safe bet is to stick with 1.5.4 for production builds and use
.Jconfigure --with-pjproject-bundled (of course) to make sure both Asterisk and pjproject are in sync with respect to library versions.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 48

Exploring Sound Prompts

Asterisk comes with a wide variety of pre-recorded sound prompts. When you install Asterisk, you can choose to install both core and extra sound
packages in several different file formats. Prompts are also available in several languages. To explore the sound files on your system, simply find the
sounds directory (this will be /var/lib/asterisk/sounds on most systems) and look at the filenames. You'll find useful prompts ("Please enter the extension
of the person you are looking for..."), as well as as a number of off-the-wall prompts (such as "Weasels have eaten our phone system”, "The office has
been overrun with iguanas”, and "Try to spend your time on hold not thinking about a blue-eyed polar bear") as well.

@ Sound Prompt Formats
Sound prompts come in a variety of file formats, such as .wav and .ulaw files. When asked to play a sound prompt from disk, Asterisk plays the
sound prompt with the file format that can most easily be converted to the CODEC of the current call. For example, if the inbound call is using
the alaw CODEC and the sound prompt is available in .gsm and .ulaw format, Asterisk will play the .ulaw file because it requires fewer CPU
cycles to transcode to the alaw CODEC.
You can type the command core show translation at the Asterisk CLI to see the transcoding times for various CODECSs. The times reported (in
Asterisk 1.6.0 and later releases) are the number of microseconds it takes Asterisk to transcode one second worth of audio. These times are
calculated when Asterisk loads the codec modules, and often vary slightly from machine to machine. To perform a current calculation of
translation times, you can type the command core show translation recalc 60.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 49

Alternate Install Methods

If you already have a Linux system that you can dedicate to Asterisk, simply use the package manager in your operating system to install Asterisk, DAHDI,
and libpri. Most modern Linux distributions such as Debian, Ubuntu, and Fedora have these packages in their repositories.

Linux distro maintained packages may be old, so watch out for that. There are no currently maintained official repositories for Asterisk packages.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 50

Asterisk Packages

1 There is currently no official repository for asterisk packages. Asterisk source code is distributed by Digium via tarballs and Git. Various
community distributions of Asterisk may utilize packages provided and hosted by the distribution maintainer.

Read through Installing Asterisk for more detail on installing Asterisk via source.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

51

Historical Packaging Information

@ At one time, Asterisk packages were also available for Ubuntu. Currently, packages are not being made by the Asterisk project for this
distribution. Information detailing the Ubuntu build environment has been moved onto this page for historical purposes.

Prerequisites

All of Ubuntu's Code, Translations, Packages, Bugs, access control lists, team information, etc. live in Launchpad. So for you to be able to contribute to bug
discussions, upload packages, contribute code and translations, it's important that you:

® Create an account on launchpad.
® Create a GPG key and import it.
® Create aSSH key and import it.

Create a Build Environment

Install Ubuntu 10.04 (Lucid)

Installing Ubuntu 10.04 (Lucid)

Enable Backports

$ sudo apt-get install python-software-properties
$ sudo add-apt-repository "deb http://ca.archive.ubuntu.con ubuntu/ $(lsb_rel ease --short
- - codenane) - backports mai n universe"

Upgrade Lucid to the latest release:

$ sudo apt-get update

$ sudo apt-get dist-upgrade
$ sudo apt-get autorenove
$ sudo reboot

Install required software

$ sudo apt-get install build-essential pbuil der debian-archive-keyring ccache

pbuilder

$ sudo nkdir -p /var/cache/ pbuil der/ccache
$ sudo nkdir -p /var/cache/ pbuil der/hook.d

$ sudo vi /etc/pbuilder/pbuilderrc

/etc/pbuilder/pbuilderrc

export CCACHE_DI R="/var/ cache/ pbui | der/ ccache"
export PATH="/usr/lib/ccache: ${ PATH} "
EXTRAPACKACGES="ccache"

Bl NDMOUNTS=" ${ CCACHE_DI R} "

Codenanes for Debian suites according to their alias. Update these when
needed.

UNSTABLE_CODENAME="si d"

TESTI NG_CODENAME="wheezy"

STABLE_CODENAME="squeeze"

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 52

https://launchpad.net/
https://help.launchpad.net/YourAccount/NewAccount
https://help.launchpad.net/YourAccount/ImportingYourPGPKey
https://help.launchpad.net/YourAccount/CreatingAnSSHKeyPair
https://wiki/pages/viewpage.action?pageId=10650163

OLDSTABLE_CODENAME="| enny"
STABLE_BACKPORTS SUI TE=" $STABLE_CODENAVME- backport s"

List of Debian suites.
DEBI AN_SUI TES=($UNSTABLE_CODENAVE $TESTI NG_CODENAME $STABLE_CODENAME $OLDSTABLE_CODENAMVE
"unst abl e" "testing" "stable" "ol dstable")

List of Ubuntu suites. Update these when needed.
UBUNTU_SUI TES=("oneiric" "natty" "maverick" "lucid")

Mrrors to use. Update these to your preferred mrror.
DEBI AN_M RROR="ft p. us. debi an. or g"
UBUNTU M RROR="mirrors. kernel .org"

Optionally use the changel og of a package to determ ne the suite to use if
none set.
if [-z "${DST}"] & [-r "debi an/changel og"]; then

Dl ST=$(dpkg- par sechangel og | awk '/~Distribution: / {print $2}")

Use the unstable suite for certain suite val ues.

if $(echo "experinmental UNRELEASED' | grep -q $DIST); then

DI ST="$UNSTABLE_CCODENANE"

fi

fi

Optionally set a default distribution if none is used. Note that you can set
your own default (i.e. ${DlI ST:="unstable"}).
${DI ST: ="$(I1 sb_rel ease --short --codenane)"}

Optionally change Debian rel ease states in $DI ST to their names.
case "$DI ST" in
unst abl e)
DI ST="$UNSTABLE_CODENANE"
testing)
DI ST="$TESTI NG_CODENAME"
stabl e)
DI ST="$STABLE_CODENAME"
ol dst abl e)
DI ST="$OLDSTABLE_CODENAVE"

esac

Optionally set the architecture to the host architecture if none set. Note
that you can set your own default (i.e. ${ARCH: ="i386"}).
${ ARCH. =" $(dpkg --print-architecture)"}

NAVE=" $DI ST"
if [-n"${ARCH"]; then

NAVE=" $NAME- $ARCH"

DEBOOTSTRAPOPTS=("--arch" "$ARCH' " ${ DEBOOTSTRAPOPTS[@}")
fi

DEBBUI LDOPTS="- b"

if ["${ARCH" == "i386"]; then
DEBBUI LDOPTS=" - B"

fi

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 53

BASETGZ="/ var / cache/ pbui | der / $NAME- base. t gz"

Optionally, set BASEPATH (and not BASETGZ) if using cowbuil der
BASEPATH="/var/ cache/ pbui | der/ $NAME/ base. cow "

DI STRI BUTI ON="$DI ST"

BUI LDRESULT="/var/ cache/ pbui | der/ $NAME/ resul t /"

APTCACHE="/ var/ cache/ pbui | der / $SNAVE/ apt cache/"

BU LDPLACE="/var/ cache/ pbui | der/buil d/"

if $(echo ${DEBIAN SUTES[@} | grep -q $DI ST); then

Debi an configuration

M RRORSI TE="ht t p: / / $DEBI AN_M RROR/ debi an/"

COVPONENTS="rmai n contri b non-free"

DEBOOT STRAPOPTS=(" ${ DEBOOTSTRAPOPTS[@ } "
"--keyring=/usr/sharel/ keyrings/debi an-archi ve-keyring. gpg")
elif $(echo ${UBUNTU SUTES[@} | grep -q $DIST); then

Ubuntu configuration

M RRORSI TE="ht t p: / / $UBUNTU_M RROR/ ubunt u/ "

COVPONENTS="nmi n uni ver se"

DEBOOT STRAPOPTS=(" ${ DEBOOTSTRAPCPTS[@ } "
"--keyring=/usr/sharel/ keyrings/ubuntu-archive-keyring.gpg")
el se

echo "Unknown distribution: $DI ST"

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

54

exit 1
fi

Debian

$ for x in unstable testing stable; do for y in i386 and64; do sudo DI ST=${x} ARCH=${y}
pbui | der create; done; done

Ubuntu

$ for x in lucid maverick natty; do for y in i386 and64; do sudo DI ST=${x} ARCH=${y}
pbui | der create; done; done

svn-buildpackage

$ vi ~/.svn-buil dpackage. conf

svn- bui | der =debui | d
svn- noaut odch

quilt

$vi ~/.quiltrc

QUI LT_PATCHES="debi an/ pat ches"

QUI LT_PATCH OPTS="--unified-reject-files"

QUI LT_REFRESH ARGS="-p ab --no-tinestanmps --no-index"

QUI LT_DI FF_OPTS="- - show-c-functi on"

QUILT_DI FF_ARGS="-p ab --no-tinmestanps --no-index --col or=auto"

devscripts

$ vi ~/.devscripts

DEBCHANGE _RELEASE_HEURI STI C=changel og
DEBCHANGE_MULTI MAI NT_MERCGE=yes
DEBCHANGE MAI NTTRAI LER=no

DEBUI LD _ROOTCMD=f aker oot

DEBUI LD_LI NTI AN=yes

DEBUI LD_LI NDA=yes

DEFAULT DEBRELEASE DEBS DI R=. ./ buil d-area/
USCAN DESTDI R=../tarballs

Create a GPG Key
https://help.ubuntu.com/community/GnuPrivacyGuardHowto

$ vi ~/.bashrc

export DEBFULLNAME=' Paul Bel anger'
export DEBEMAI L=' pabel anger @li gi um coni
export GPCKEY=8C3BOFA6

export EDI TOR=vi

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

55

https://help.ubuntu.com/community/GnuPrivacyGuardHowto

See also

® Ubuntu Packaging Guide

Updating an Ubuntu Package

New upstream release

Checkout source

$ nkdir -p ~/digium
$ cd ~/digium
$ svn http://blah.org/svn/bl ah

Upstream tarball

$ uscan --verbose

Update the changelog file

$ dch -e

Update patches

$ while quilt push; do quilt refresh; done

Release package

$ dch -r

Build package source

$ svn-bui | dpackage -S

Compile package

$ dput ppa: pabel anger/testing ../buil d-areal*.changes

rebuildd
Introduction

Prerequisites
Creating a Build Environment
Getting started

sudo apt-get install rebuildd reprepro apache2

reprepro

$ sudo adduser --system --shell /bin/bash --gecos 'Reprepro Daenon’
--di sabl ed- password reprepro

$ sudo su reprepro

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

--group

56

https://wiki.ubuntu.com/PackagingGuide/Complete
https://wiki/pages/createpage.action?spaceKey=AST&title=Creating+a+Build+Environment&linkCreation=true&fromPageId=27199498

$ cd ~
$ nkdir bin conf incom ng

$ vi ~/conf/distributions

distributions

Suite: | ucid-proposed
Version: 10.04
Codenane: | uci d-proposed
Architectures: 386 and64 source
Conponents: nmin
SignWth: yes
Log: logfile
--changes ~/ bin/buil d_sources

$ vi ~/conf/inconi ng

incoming

Nane: incom ng

I ncom ngDir: incom ng

Al'l ow. | ucid-proposed

Cl eanup: on_deny on_error

TenpDir: tnp

$ vi ~/conf/apache. conf

apache.conf

Al'i as /debi an / hone/ repreprol
<Di rectory /home/reprepro>
Options +l ndexes
Al l owOverride None
order all ow, deny
allow fromall
</Directory>

$ vi ~/bin/build_sources

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

57

#!/ bi n/ bash

action=%$1
rel ease=%$2
package=$3
ver si on=%$4
changes_fil e=$5

Only care about packages being added

if ["$action" != "accepted"]
then

exit O
f

Only care about source packages
echo $changes _file | grep -q _source.changes

if [$?2 = 1]
t hen

exit O
f

Kick off the job
echo "$package $version 1 $release” | sudo rebuil dd-job add

$ reprepro -V -b . createsymnlinks
$ reprepro -V -b . processincom ng incom ng

$ exit

rebuildd

$ sudo vi /etc/default/rebuildd

START_REBUI LDD=1
START_REBUI LDD _HTTPD=1
DI STS="I uci d"

Also see

® http://alioth.debian.org/scm/viewvc.php/*checkout*/mirrorer/docs/manual.html?revision=HEAD&root=mirrorer
® http://inodes.org/2009/09/14/building-a-private-ppa-on-ubuntu/

Working with Source Packages

$ sudo apt-get build-dep asterisk

$ DEB_BUI LD_OPTI ONS="debug" apt-get -b source asterisk

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

58

http://alioth.debian.org/scm/viewvc.php/*checkout*/mirrorer/docs/manual.html?revision=HEAD&root=mirrorer
http://inodes.org/2009/09/14/building-a-private-ppa-on-ubuntu/

Installing Asterisk on Non-Linux Operating Systems

Sub-pages here should provide guidance for installation on Non-Linux operating systems. Contributions are welcome!

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

59

Asterisk on (Open)Solaris

Asterisk on Solaris 10 and OpenSolaris

On this page
® Asterisk on Solaris 10 and OpenSolaris
® Digium's Support Status
¢ Build Notes
® Prerequisites
® LDAP dependencies
* Makefile layouts
® FAX support with SpanDSP
® Gotchas
® Runtime issues
® Build issues

Digium's Support Status

According to the README file from 1.6.2: "Asterisk has also been 'ported' and reportedly runs properly on other operating systems as well, including Sun
Solaris, Apple's Mac OS X, Cygwin, and the BSD variants." Digium's developers have also been doing a good job of addressing build and run-time issues
encountered with Asterisk on Solaris.

Build Notes

Prerequisites
The following packages are recommend for building Asterisk 1.6 and later on OpenSolaris:

® SUNWIibm (math library)

® gcc-dev (compiler and several dependencies)

* SUNWflexlex (GNU flex)

®* SUNWggrp (GNU grep)

® SUNWGgsed (GNU sed)

®* SUNWdoxygen (optional; needed for "make progdocs")

®* SUNWopenldap (optional; needed for res_config_ldap; see below)

* SUNWgnu-coreutils (optional; provides GNU install; see below)

Caution: installing SUNW gnu packages will change the default application run when the user types 'sed’ and 'grep' from /usr/bin/sed to /usr/gnu/bin/sed.
Just be aware of this change, as there are differences between the Sun and GNU versions of these utilities.

LDAP dependencies

Because OpenSolaris ships by default with Sun's LDAP libraries, you must install the SUNWopenldap package to provide OpenLDAP libraries. Because of
namespace conflicts, the standard LDAP detection will not work.

There are two possible solutions:

1. Port res_config_Ildap to use only the RFC-specified API. This should allow it to link against Sun's LDAP libraries.
® The problem is centered around the use of the OpenLDAP-specific |dap_initialize() call.

2. Change the detection routines in configure to use OpenSolaris' layout of OpenLDAP.
® This seems doubtful simply because the filesystem layout of SUNWopenldap is so non-standard.

Despite the above two possibilities, there is a workaround to make Asterisk compile with res_config_Idap.

® Modify the "configure" script, changing all instances of "-lldap” to "-lldap-2.4".
® At the time of this writing there are only 4 instances. This alone will make configure properly detect LDAP availability. But it will
not compile.
® When running make, specify the use of the OpenLDAP headers like this:
"make LDAP_I NCLUDE=-1/usr/incl ude/ openl dap"

Makefile layouts

This has been fixed in Asterisk 1.8 and is no longer an issue.

In Asterisk 1.6 the Makefile overrides any usage of --prefix. | suspect the assumptions are from back before configure provided the ability to set the
installation prefix. Regardless, if you are building on OpenSolaris, be aware of this behavior of the Makefile!

If you want to alter the install locations you will need to hand-edit the Makefile. Search for the string "SunOS" to find the following section:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 60

Define standard directories for various platforns
These apply if they are not redefined in asterisk.conf
ifeq ($(CSARCH), SunCs)

ASTETCDI R=/ et c/ ast eri sk

ASTLI BDI R=/ opt/ asterisk/lib

ASTVARLI BDI R=/ var / opt / ast eri sk

ASTDBDI R=$(ASTVARLI BDI R)

ASTKEYDI R=$(ASTVARLI BDI R)

ASTSPOOLDI R=/ var/ spool / ast eri sk

ASTLOGDI R=/ var /| og/ ast eri sk

ASTHEADERDI R=/ opt / ast eri sk/i ncl ude/ ast eri sk

ASTBI NDI R=/ opt / ast eri sk/bin

ASTSBI NDI R=/ opt / ast eri sk/ shin

ASTVARRUNDI R=/ var/run/ asteri sk

ASTMANDI R=/ opt / ast er i sk/ man
el se

Note that, despite the comment, these definitions have build-time and run-time implications. Make sure you make these changes BEFORE you build!

FAX support with SpanDSP

| have been able to get this to work reliably, including T.38 FAX over SIP. If you are running Asterisk 1.6 note Ticket 16342 if you do not install SpanDSP to
the default locations (/usr/include and /usr/lib).

There is one build issue with SpanDSP that | need to document (FIXME)
Gotchas

Runtime issues

®* WAV and WAVA49 files are not written correctly (see Ticket 16610)
® 32-bit binaries on Solaris are limited to 255 file descriptors by default. (see http://developers.sun.com/solaris/articles/stdio_256.html)

Build issues

bootstrap.sh does not correctly detect OpenSolaris build tools (see Ticket 16341)

Console documentation is not properly loaded at startup (see Ticket 16688)

Solaris sed does not properly create AEL parser files (see Ticket 16696; workaround is to install GNU sed with SUNWgsed)
Asterisk's provided install script, install-sh, is not properly referenced in the makeopts file that is generated during the build. One
workaround is to install GNU install from the SUNW(gnu-coreutils package. (See Ticket 16781)

Finally, Solaris memory allocation seems far more sensitive than Linux. This has resulted in the discovery of several previously unknown bugs related to
uninitialized variables that Linux handled silently. Note that this means, until these bugs are found and fixed, you may get segfaults.

At the time of this writing | have had a server up and running reasonably stable. However, there are large sections of Asterisk's codebase | do not use and
likely contain more of these uninitialized variable problems and associated potential segfaults.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 61

https://issues.asterisk.org/view.php?id=16342
https://issues.asterisk.org/view.php?id=16610
http://developers.sun.com/solaris/articles/stdio_256.html
https://issues.asterisk.org/view.php?id=16341
https://issues.asterisk.org/view.php?id=16688
https://issues.asterisk.org/view.php?id=16696
https://issues.asterisk.org/view.php?id=16781

Hello World

® Hello World with Asterisk and SIP
Requirements
Configuration files needed
Configure extensions.conf
Configure a SIP channel driver
® Configure chan_sip
® Configure chan_pjsip
® Configure your SIP phone
® Start Asterisk
* Make the call

You've just installed Asterisk and you have read about basic configuration. Now let's quickly get a phone call working so you can get a taste for a simple
phone call to Asterisk.

Hello World with Asterisk and SIP

Requirements

This tutorial assumes the following:

® You have a SIP phone plugged into the same LAN where the Asterisk server is plugged in, or can install the Zoiper softphone used in the
example

® |f you use your own hardware phone, we assume both the phone and Asterisk can reach each other and are on the same subnet.

® When you built Asterisk, you should have made sure to build the SIP channel driver you wanted to use, which may imply other
requirements. For example if you want to use chan_pjsip, then make sure you followed the Installing pjproject guide.

Configuration files needed

You should have already run "make samples" if you installed from source, otherwise you may have the sample config files if you installed from packages.

If you have no configuration files in /etc/asterisk/ then grab the sample config files from the source directory by navigating to it and running "make
samples”.

Files needed for this example:

asterisk.conf
modules.conf
extensions.conf
sip.conf or pjsip.conf

You can use the defaults for asterisk.conf and modules.conf, we'll only need to modify extensions.conf and sip.conf or pjsip.conf.

To get started, go ahead and move to the /etc/asterisk/ directory where the files are located.

‘ cd /etc/asterisk

Configure extensions.conf

Backup the sample extensions.conf and create a new one

nv ext ensi ons. conf extensions. sanpl e
vi m ext ensi ons. conf

I'm assuming you use the VI/VIM editor here, after all, it is the best.
We are going to use a very simple dialplan. A dialplan is simply instructions telling Asterisk what to do with a call.

Edit your blank extensions.conf to reflect the following:

[frominternal]
exten = 100, 1, Answer ()

sanme = n, Wit (1)
same = n, Pl ayback(hel | o-worl d)
sanme = n, Hangup()

When a phone dials extension 100, we are telling Asterisk to Answer the call, Wait one second, then Play (Playback) a sound file (hello-world) to the
channel and Hangup.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 62

Configure a SIP channel driver

Depending on the version of Asterisk in use, you may have the option of more than one SIP channel driver. You'll have to pick one to use for the example.

(D ® Asterisk 11 and previous: chan_sip is the primary option.
® Asterisk 12 and beyond: You'll probably want to use chan_pjsip (the newest driver), but you still have the option of using
chan_sip as well

Follow the instructions below for the channel driver you chose.

Configure chan_sip
Backup and edit a new blank sip.conf, just like you did with extensions.conf.

Then add the following to your sip.conf file:

[general]
cont ext =def aul t

[6001]
type=friend

cont ext =f rom i nt er nal
host =dynani c

secr et =unsecur epasswor d
di sal | ow=al |

al | ow=ul aw

Basic configuration will be explained in more detail in other sections of the wiki. For this example to work, just make sure you have everything exactly as
written above. For the sake of terminology, it is useful to note that though we have this SIP configuration configured with "type=friend", most people refer to
this as configuring a SIP peer.

Configure chan_pjsip

Backup and edit a new blank pjsip.conf, just like you did with extensions.conf.

Then add the following to your pjsip.conf file:

[transport - udp]
type=transport
prot ocol =udp
bi nd=0.0.0.0

[6001]

t ype=endpoi nt

cont ext=f rom i nt ernal
di sal | ow=al |

al | ow=ul aw

aut h=6001

aor s=6001

[6001]

type=aut h

aut h_t ype=user pass
passwor d=unsecur epasswor d
user nane=6001

[6001]
t ype=aor
max_cont act s=1

Configure your SIP phone

You can use any SIP phone you want of course, but for this demonstration we'll use Zoiper, a Softphone which just happens to be easily demonstrable.

You can find the latest version of Zoiper for your platform at their website. You can install it on the same system you are running Asterisk on, or it may
make more sense to you if you install on another system on the same LAN (though you might find complication with software firewalls in that case).

Once you have Zoiper installed. Configure a new SIP account in Zoiper.

. Once Zoiper is opened, click the wrench icon to get to settings.

. Click "Add new SIP account"

. Enter 6001 for the account name, click OK

. Enter the IP address of your Asterisk system in the Domain field
. Enter 6001 in the Username field

. Enter your SIP peer's password in the Password field

O WNE

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 63

http://www.zoiper.com/en/voip-softphone/download/zoiper3

7. Enter whatever you like in Caller ID Name or leave it blank

8. Click OK
[} QlFER Options X
—SIP account options
v SIP accounts - .

Domain : |192.168.1.224

450 Add new SIP account Usermame : [g001

¥ a IAX accounts
4is Add new IAX account Password : | g@eeeeeeeeeeeess

v Audio options
d.lj Caller ID Name :

Audio devices

Audio codecs
¥ .57 General options

Call events

") Fax options

Your results should look like the above screen shot.

Start Asterisk

Back at the Linux shell go ahead and start Asterisk. We'll start Asterisk with a control console (-c) and level 5 verbosity (vwvvv).

asterisk -cvvvvv

Or if Asterisk is already running, restart Asterisk from the shell and connect to it.

asterisk -rx "core restart now'
asterisk -rvvvvy

Make the call

Go back to the main Zoiper interface, and make sure the account is registered. Select the account from the drop down list and click the Register button
next to it. If it says registered, you are good to go. If it doesn't register, then double check your configuration.

Once registered, enter extension 100 and click the Dial button. The call should be made and you should hear the sound file hello-world!

On the Asterisk CLI, you should see something like:
== Using SIPF RTP CoS5 mark 5
-- Executing [1880from-internal:11 . ") in new =i
ck
-- Executing [1A8@from-internal:21] "1") in new st
k
-- Executing [1BB@from-internal:31]
") in new stack
-- <5IP-6BB1-ABABABA1> Flaying "hello-world.gsm’ (language 'en’)
-- Executing [1BB0from-internal:4] O Y. ") in new =i

Spawn extension (from-internal, 188, 4) exited non-zero on 'SIP-/6BB1-BHBABE

entosclean=CLI>

Now that you have made a very simple call, you may want to start reading through the other sections on the wiki to learn more about Operation, Fundamen
tals and Configuration.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 64

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

65

Fundamentals

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

66

Asterisk Architecture

From an architectural standpoint, Asterisk is made up of many different modules. This modularity gives you an almost unlimited amount of flexibility in the
design of an Asterisk-based system. As an Asterisk administrator, you have the choice on which modules to load and the configuration of each module.

Each module that you load provides different capabilities to the system. For example, one module might allow your Asterisk system to communicate with
analog phone lines, while another might add call reporting capabilities. In this section, we'll discuss the overall relationships of some Asterisk component,

the various types of modules and their capabilities.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

67

Asterisk Architecture, The Big Picture

Before we dive too far into the various types of modules, let's first take a step back and look at the overall architecture of Asterisk.

Asterisk a big program with many components, with complex relationships. To be able to use it, you don't have to know how everything relates in extreme
detail. Below is a simplified diagram intended to illustrate the relationships of some major components to each other and to entities outside Asterisk. It is
useful to understand how a component may relate to things outside Asterisk as Asterisk is not typically operating without some connectivity or interaction

with other network devices or files on the local system.

An Asterisk System

Network Hardware Local OS Asterisk Components
—_—
Eo— I Channel Drivers
elephony
interiace DAHDI libpri —— chan_dahdi
han_pjsip
Board ©
ards chan_iax2
—_
s Application
Program Interfaces
— AGI, AMI, AR,
‘Core and other
modules:
Programs/ Bridging
Network o Scripts " Resources
interface - J:E;Ei: PBX/Configuration Codecs
Hardware g — PBXConfig Formats
DB Backends runetions
1
Local communication " res_odbe, cdr_mysql,
devices : ...| Configuration e
H flat files or DB
et Reporting and Logging
H (\ CDR, CEL, Core and
H Asterisk driver logging modules.
L : Reporting
Webserveriwebsite and
§ Logging
=== Commands and help
documentation
Asterisk
CLlata -
Database Linux

__terminal /

Remember this is not an exhaustive diagram. It covers only a few of the common relationships between certain components.

On this Page

® An Asterisk System
® Asterisk Architecture
® The Core
® Modules
® Calls and Channels
® Dialplan

Asterisk Architecture

Asterisk has a core that can interact with many modules. Modules called channel drivers provide channels that follow Asterisk dialplan to execute
programmed behavior and facilitate communication between devices or programs outside Asterisk. Channels often use bridging infrastructure to interact
with other channels. We'll describe some of these concepts in brief below.

The Core

The heart of any Asterisk system is the core. The PBX core is the essential component that provides a lot of infrastructure. Among many functions it reads
the configuration files, including dialplan and loads all the other modules, distinct components that provide more functionality.

The core loads and builds the dialplan, which is the logic of any Asterisk system. The dialplan contains a list of instructions that Asterisk should follow to
know how to handle incoming and outgoing calls on the system.

Modules

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 68

Other than functionality provided by the core of Asterisk, modules provide all other functionality. The source for many modules is distributed with Asterisk,
though other modules may be available from community members or even businesses that make commercial modules. The modules distributed with
Asterisk can be optionally be built when Asterisk is built.

Modules are not only optionally built, but you can affect at load-time whether they will be loaded at all, the loading order or even unload/load them during
run-time. Most modules are independently configurable and have their own configuration files. Some modules have support for configuration to be read
statically or dynamically(realtime) from database backends.

From a logistical standpoint, these modules are typically files with a .so file extension, which live in the Asterisk modules directory (which is typically /usr/li
b/asterisk/modules). When Asterisk starts up, it loads these files and adds their functionality to the system.

Asterisk modules which are part of the core have a file name that look like pbx_xxxxx.so. All of the modules types are discussed in the section Types of
Asterisk Modules.

A Plethora of Modules
Take just a minute and go look at the Asterisk modules directory on your system. You should find a wide variety of modules. A default
installation of Asterisk has over one hundred fifty different modules!

A Few Module Examples

® chan_pjsip uses res_pjsip and many other res_pjsip modules to provide a SIP stack for SIP devices to interact with Asterisk and with
each other through Asterisk.

® app_voicemail provides traditional PBX-type voicemail features.

® app_confbridge provides conference bridges with many optional features.

® res_agi provides the Asterisk Gateway Interface, an API that allows call control from external scripts and programs.

Calls and Channels

As was mentioned in the Asterisk as a Swiss Army Knife of Telephony section, the primary purpose of Asterisk is being an engine for building Real Time
Communication systems and applications.

In most but not all cases this means you'll deal with the concept of "calls". Calls in telephony terminology typically refer to one phone communicating with
(calling) another phone over a medium, such as a PSTN line. However in the case of Asterisk a call typically references one or more channels existing in
Asterisk.

Here are some example "calls".

® A phone calling another phone through Asterisk.

® A phone calling many phones at once (for example, paging) through Asterisk.

® A phone calls an application or the reverse happens. e.g., app_voicemail or app_queue

® Alocal channel is created and interacts with an application or another channel.

Note that | primarily use phones as an example, however you could refer to any channel or group of channels as a call. It doesn't matter if the devices are
phones or something else, like an alarm system sensor or garage door opener.

Channels

Channels are created by Asterisk using Channel Drivers. They can utilize other resources in the Asterisk system to facilitate various types of
communication between one or more devices. Channels can be bridged to other channels and be affected by applications and functions. Channels can
make use of many other resources provided by other modules or external libraries. For example SIP channels when passing audio will make use of the co
dec and format modules. Channels may interact with many different modules at once.

Dialplan

Dialplan is the one main method of directing Asterisk behavior. Dialplan exists as text files (for example extensions.conf) either in the built-in dialplan
scripting language, AEL or LUA formats. Alternatively dialplan could be read from a database, along with other module configuration. When writing dialplan,
you will make heavy use of applications and functions to affect channels, configuration and features.

Dialplan can also call out through other interfaces such as AGI to receive call control instruction from external scripts and programs. The Dialplan section of
the wiki goes into detail on the usage of dialplan.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 69

http://en.wikipedia.org/wiki/Public_switched_telephone_network
https://wiki/display/AST/Asterisk+11+Application_AGI

Types of Asterisk Modules

There are many different types of modules, each providing their own functionality and capabilities to Asterisk. Configuration of loading is described in Confi
guring the Asterisk Module Loader.

@ Use the CLI command module show to see all the loaded modules in your Asterisk system. See the command usage for details on how to filter
the results shown with a pattern.
= Click here for example "module show" output...

nypbx*CLI > nodul e show

Modul e Description Use Count Status Support Level
app_adsi prog. so Asterisk ADSI Progranm ng Application 0 Runni ng ext ended
app_agent _pool . so Cal | center agent pool applications 0 Runni ng core
app_al arnrecei ver. so Al arm Recei ver for Asterisk 0 Runni ng ext ended
app_and. so Answering Machine Detection Application O Runni ng ext ended
app_aut henti cate. so Aut henti cation Application 0 Runni ng core

Various Module Types

® Channel Drivers
Channel drivers communicate with devices outside of Asterisk, and translate that particular signaling or protocol to the core.
® Dialplan Applications

Applications provide call functionality to the system. An application might answer a call, play a sound prompt, hang up a call or provide more complex
behavior such as queuing, voicemail or conferencing feature sets.

¢ Dialplan Functions

Functions are used to retrieve, set or manipulate various settings on a call. A function might be used to set the Caller ID on an outbound call, for example.
® Resources

As the name suggests, resources provide resources to Asterisk and its modules. Common examples of resources include music on hold and call parking.
* CODECs

A CODEC (which is an acronym for COder/DECoder) is a module for encoding or decoding audio or video. Typically codecs are used to encode media so
that it takes less bandwidth. These are essential to translating audio between the audio codecs and payload types used by different devices.

® File Format Drivers
File format drivers are used to save media to disk in a particular file format, and to convert those files back to media streams on the network.
® Call Detail Record (CDR) Drivers
CDR drivers write call logs to a disk or to a database.
® Call Event Log (CEL) Drivers
Call event logs are similar to call detail records, but record more detail about what happened inside of Asterisk during a particular call.
® Bridge Drivers

Bridge drivers are used by the bridging architecture in Asterisk, and provide various methods of bridging call media between participants in a call.

The next sub-sections will include detail on each of the module types.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 70

Channel Driver Modules

All calls from the outside of Asterisk go through a channel driver before reaching the core, and all outbound calls go through a channel driver on their way
to the external device.

The PJSIP channel driver (chan_pjsip), for example, communicates with external devices using the SIP protocol. It translates the SIP signaling into the
core. This means that the core of Asterisk is signaling agnostic. Therefore, Asterisk isn't just a SIP or VOIP communications engine, it's a multi-protocol
engine.

For more information on the various channel drivers, see the configuration section for Channel Drivers.

All channel drivers have a file name that look like chan_xxxxx.so, such as chan_pjsip.so or chan_dahdi.so.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 71

Dialplan Application Modules

The application modules provide call functionality to the system. These applications are then scripted sequentially in the dialplan. For example, a call might
come into Asterisk dialplan, which might use one application to answer the call, another to play back a sound prompt from disk, and a third application to
allow the caller to leave voice mail in a particular mailbox.

For more information on dialplan applications, see Applications.

All application modules have file names that looks like app_xxxxx.so, such as app_voicemail.so, however applications and functions can also be
provided by the core and other modules. Modules like res_musiconhold and res_xmpp provide applications related to their own functionality.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 72

Dialplan Function Modules

Dialplan functions are somewhat similar to dialplan applications, but instead of doing work on a particular channel or call, they simply retrieve or set a
particular setting on a channel, or perform text manipulation. For example, a dialplan function might retrieve the Caller ID information from an incoming call,
filter some text, or set a timeout for caller input.

For more information on dialplan functions, see PBX Features.

All dialplan function modules have file names that looks like func_xxxxx.so, such as func_callerid.so, however applications and functions can also be
provided by the core and other modules. Modules like res_musiconhold and res_xmpp provide applications related to their own functionality.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 73

https://wiki/pages/createpage.action?spaceKey=AST&title=PBX+Features&linkCreation=true&fromPageId=4817487

Resource Modules

Resources provide functionality to Asterisk that may be called upon at any time during a call, even while another application is running on the channel.
Resources are typically used as asynchronous events such as playing hold music when a call gets placed on hold, or performing call parking.

Resource modules have file names that looks like res_xxxxx.so, such as res_musiconhold.so.

Resource modules can provide Asterisk 1.8 Dialplan Applications and Asterisk 1.8 Dialplan Functions even if those apps or functions don't have separate

modules.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

74

https://wiki/display/AST/Asterisk+1.8+Dialplan+Applications
https://wiki/display/AST/Asterisk+1.8+Dialplan+Functions

Codec Modules

CODEC modules have file names that look like codec_xxxxx.so0, such as codec_alaw.so and codec_ulaw.so.

CODECs represent mathematical algorithms for encoding (compressing) and decoding (decompression) media streams. Asterisk uses CODEC modules to
both send and recieve media (audio and video). Asterisk also uses CODEC modules to convert (or transcode) media streams between different formats.

Modules Provided by Default
Asterisk is provided with CODEC modules for the following media types:

* ADPCM, 32kbit/s

® G.711 A-law, 64kbit/s
® G.711 p-law, 64kbit/s
® G.722, 64kbit/s

® (G.726, 32kbit/s

® GSM, 13kbit/s

® LPC-10, 2.4kbit/s

Other Formats and Modules

The Asterisk core provides capability for 16 bit Signed Linear PCM, which is what all of the CODECs are encoding from or decoding to. There is another
CODEC module, codec_resample which allows re-sampling of Signed Linear into different sampling rates 12,16,24,32,44,48,96 or 192 kHz to aid

translation.

Various other CODEC modules will be built and installed if their dependencies are detected during Asterisk compilation.

® |f the DAHDI drivers are detected then codec_dahdi will installed.
* |f the Speex (www.speex.org) development libraries are detected, codec_speex will also be installed.
® |f the iLBC (www.ilbcfreeware.org) development libraries are detected, codec_ilbc will also be installed.

Support for the patent-encumbered G.729A or G.723.1 CODECSs is provided by Digium on a commercial basis through software (G.729A) or hardware
(G.729A and G.723.1) products. For more information about purchasing licenses or hardware to use the G.729A or G.723.1 CODECs with Asterisk, please

see Digium's website.

Support for Polycom's patent-encumbered but free G.722.1 Siren7 and G.722.1C Siren14 CODECSs, or for Skype's SILK CODEC, can be enabled in
Asterisk by downloading the binary CODEC modules from Digium's website.

On the Asterisk Command Line Interface, use the command "core show translation" to show the translation times between all registered audio
formats.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 75

http://www.speex.org
http://www.ilbcfreeware.org/
http://downloads.digium.com/pub/telephony/

File Format Drivers

Asterisk uses file format modules to take media (such as audio and video) from the network and save them on disk, or retrieve said files from disk and
convert them back to a media stream. While often related to CODECs, there may be more than one available on-disk format for a particular CODEC.

File format modules have file names that look like format_xxxxx.so, such as format_wav.so and format_jpeg.so.
Below is a list of format modules included with recent versions of Asterisk:

format_g719
format_g723
format_g726
format_g729
format_gsm
format_h263
format_h264
format_ilbc
format_jpeg
format_ogg_vorbis
format_pcm
format_siren7
format_siren14
format_sin
format_vox
format_wav_gsm
format_wav

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

76

Call Detail Record (CDR) Drivers

CDR modules are used to store Call Detail Records (CDR) in a variety of formats. Popular storage mechanisms include comma-separated value (CSV)
files, as well as relational databases such as MySQL or PostgreSQL. Call detail records typically contain one record per call, and give details such as who
made the call, who answered the call, the amount of time spent on the call, and so forth.

Call detail record modules have file names that look like cdr_xxxxx.so, such as cdr_csv.so. The recommended module to use for connecting to CDR
Storage Backends is cdr_adaptive_odbc.so.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 77

Call Event Log (CEL) Driver Modules

Call Event Logs record the various actions that happen on a call. As such, they are typically more detailed that call detail records. For example, a call event
log might show that Alice called Bob, that Bob's phone rang for twenty seconds, then Bob's mobile phone rang for fifteen seconds, the call then went to
Bob's voice mail, where Alice left a twenty-five second voicemail and hung up the call. The system also allows for custom events to be logged as well.

For more information about Call Event Logging, see Call Event Logging.

Call event logging modules have file names that look like cel_xxxxx.so, such as cel_custom.so and cel_adaptive_odbc.so.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 78

https://wiki/pages/createpage.action?spaceKey=AST&title=Channel+Event+Logging&linkCreation=true&fromPageId=4817498

Bridging Modules

Beginning in Asterisk 1.6.2, Asterisk introduced a new method for bridging calls together. It relies on various bridging modules to control how the media
streams should be mixed for the participants on a call. The new bridging methods are designed to be more flexible and more efficient than earlier methods.

Bridging modules have file names that look like bridge_xxxxx.so, such as bridge_simple.so and bridge_multiplexed.so.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 79

Directory and File Structure

The top level directories used by Asterisk can be configured in the asterisk.conf configuration file.

Here we'll describe what each directory is used for, and what sub-directories Asterisk will place in each by default. Below each heading you can also see
the correlating configuration line in asterisk.conf.

Asterisk Configuration Files

‘ astetcdir => /etc/asterisk

This location is used to store and read Asterisk configuration files. That is generally files with a .conf extension, but other configuration types as well, for
example .lua and .ael.

Asterisk Modules

astmoddir => /usr/lib/asterisk/nodul es

Loadable modules in Shared Object format (.so) installed by Asterisk or the user should go here.

Various Libraries

‘ astvarlibdir => /var/lib/asterisk

Additional library elements and files containing data used in runtime are put here.

On This Page

Asterisk Configuration Files
Asterisk Modules

Various Libraries

Database Directory
Encryption Keys

System Data Directory
AGI(Asterisk Gateway Interface) Directory
Spool Directories

Running Process Directory
Logging Output

System Binary Directory

Database Directory

‘ astdbdir => /var/lib/asterisk

This location is used to store the data file for Asterisk's internal database. In Asterisk versions using the SQLite3 database, the file will be named
astdb.sqlite3.

Encryption Keys

‘ astkeydir => /var/lib/asterisk

When configuring key-based encryption, Asterisk will look in the keys subdirectory of this location for the necessary keys.

System Data Directory

‘ astdatadir => /var/lib/asterisk

By default, Asterisk sounds are stored and read from the sounds subdirectory at this location.

AGI(Asterisk Gateway Interface) Directory

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 80

‘ astagidir => /var/lib/asterisk/agi-bin

When using various AGI applications, Asterisk looks here for the AGI scripts by default.

Spool Directories

astspool dir => /var/spool /asterisk

This directory is used for storing spool files from various core and module-provided components of Asterisk.
Most of them use their own subdirectories, such as the following:

dictate
meetme
monitor
outgoing
recording
system
tmp
voicemail

Running Process Directory

‘ astrundir => /var/run/asterisk

When Asterisk is running, you'll see two files here, asterisk.ctl and asterisk.pid. That is the control socket and the PID(Process ID) files for Asterisk.

Logging Output

astlogdir => /var/log/asterisk

When Asterisk is configured to provide log file output, it will be stored in this directory.

System Binary Directory

‘ ast sbindir => /usr/sbin

By default, Asterisk looks in this directory for any system binaries that it uses, if you move the Asterisk binary itself or any others that it uses, you'll need to
change this location.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 81

https://wiki/display/AST/Asterisk+11+Application_AGI

Asterisk Configuration

The top-level page for all things related to Asterisk configuration

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

82

Asterisk Configuration Files

This Asterisk Configuration Files section covers the following:

The Config File Format and syntax.

How to use Comments in the files.

Using The include, tryinclude and exec Constructs to include file content into other files or get external program output into a file
Adding to an existing section settings from other configuration sections

The syntax and usage of Templates for avoiding redundant configuration.

See also
If you haven't read it already, the Asterisk Architecture section will help you to understand the context within which the configuration files are used. The Dire

ctory and File Structure will tell you exactly where to find the configuration files which we generalize in this section. See the Configuration section for
information on how to configure files related to specific components of Asterisk.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 83

Config File Format

Asterisk is a very flexible telephony engine. With this flexibility, however, comes a bit of complexity. Asterisk has quite a few configuration files which control
almost every aspect of how it operates. The format of these configuration files, however, is quite simple. The Asterisk configuration files are plain text files,
and can be edited with any text editor.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 84

Sections and Settings

The configuration files are broken into various section, with the section name surrounded by square brackets. Section names should not contain spaces,
and are case sensitive. Inside of each section, you can assign values to various settings. Note that settings are also referred to as configuration options or
just, options. In general, settings in one section are independent of values in another section. Some settings take values such as true or false, while other
settings have more specific settings. The syntax for assigning a value to a setting is to write the setting name, an equals sign, and the value, like this:

[secti on- nane]
setting=true

[anot her _secti on]
setting=fal se
setting2=true

Additionally here is closer to real-life example from the pjsip.conf.sample file:

[transport-udp-nat]

type=transport

prot ocol =udp

bi nd=0.0.0.0

| ocal _net=192.0.2.0/ 24

external _nmedi a_address=203. 0. 113. 1
external _si gnal i ng_address=203.0.113.1

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 85

Objects

Some Asterisk configuration files also create objects. The syntax for objects is slightly different than for settings. To create an object, you specify the type of
object, an arrow formed by the equals sign and a greater-than sign (=>), and the settings for that object.

[section- nane]
some_obj ect => settings

@ Confused by Object Syntax?
In order to make life easier for newcomers to the Asterisk configuration files, the developers have made it so that you can also create objects
with an equal sign. Thus, the two lines below are functionally equivalent.

sone_obj ect => settings
some_obj ect =set ti ngs

It is common to see both versions of the syntax, especially in online Asterisk documentation and examples. This book, however, will denote
objects by using the arrow instead of the equals sign.

[secti on- nane]
| abel 1=val uel
| abel 2=val ue2
obj ect1l => nanel

| abel 1=val ue0
| abel 3=val ue3
obj ect 2 => nane2

In this example, objectl inherits both labell and label2. It is important to note that object2 also inherits label2, along with labell (with the new overridden

value value0) and label3.

In short, objects inherit all the settings defined above them in the current section, and later settings override earlier settings.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 86

Comments

We can (and often do) add comments to the Asterisk configuration files. Comments help make the configuration files easier to read, and can also be used
to temporarily disable certain settings.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 87

Comments on a Single Line

Single-line comments begin with the semicolon (;) character. The Asterisk configuration parser treats everything following the semicolon as a comment. To
expand on our previous example:

[section- nane]
setting=true

[anot her _secti on]

setting=false ; this is a coment

; this entire line is a comment

; awesomnme=true

the semicolon on the |ine above makes it a
conment, disabling the setting

)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 88

Block Comments

Asterisk also allows us to create block comments. A block comment is a comment that begins on one line, and continues for several lines. Block comments
begin with the character sequence

and continue across multiple lines until the character sequence

is encountered. The block comment ends immediately after --; is encountered.

[secti on- nane]

setting=true

;-- this is a block conment that begins on this line
and continues across nultiple lines, until we

get to here --;

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 89

Using The include, tryinclude and exec Constructs

include, tryinclude and exec
(D You might have arrived here looking for Include Statements specific to Asterisk dialplan.

There are two other constructs we can use within all of our configuration files. They are #include and #exec.

The #include construct tells Asterisk to read in the contents of another configuration file, and act as though the contents were at this location in this
configuration file. The syntax is #include filename, where filename is the name of the file you'd like to include. This construct is most often used to break a
large configuration file into smaller pieces, so that it's more manageable. The asterisk/star character will be parsed in the path, allowing for the inclusion of
an entire directory of files. If the target file specified does not exist, then Asterisk will not load the module that contains configuration with the #include

directive.

The #tryinclude construct is the same as #include except it won't stop Asterisk from loading the module when the target file does not exist.

The #exec takes this one step further. It allows you to execute an external program, and place the output of that program into the current configuration file.
The syntax is #exec program, where program is the name of the program you'd like to execute.

The #exec, #include, and #tryinclude constructs do not work in the following configuration files:
® asterisk.conf
® modules.conf

Enabling #exec Functionality

The #exec construct is not enabled by default, as it has some risks both in terms of performance and security. To enable this functionality, go to
the asterisk.conf configuration file (by default located in /etc/asterisk) and set execincludes=yes in the [options] section. By default both the [
options] section heading and the execincludes=yes option have been commented out, you you'll need to remove the semicolon from the

beginning of both lines.

Examples

Let's look at example of both constructs in action. This is a generic example meant to illustrate the syntax usage inside a configuration file.

[section- nane]
setting=true

#i ncl ude ot herconfi g. conf ; include another configuration file

#i ncl ude ny_other_files/*.conf ; include all .conf files in the subdirectory
my_other_files

#exec ot her program ; include output of otherprogram

You can use #tryinclude if there is any chance the target file may not exist and you still want Asterisk to load the configuration for the module.
Here is a more realistic example of how #exec might be used with real-world commands.

#exec /usr/bin/curl -s http://exanple.conl nystuff > /etc/asterisk/nmystuff
#i ncl ude nystuff

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 90

Adding to an existing section

If you want to add settings to an existing section of a configuration file (either later in the file, or when using the #include and #exec constructs), add a plus
sign in parentheses after the section heading, as shown below:

[secti on- nane]
settingl=val uel

[section-nane] (+)
setting2=val ue2

This example shows that the setting2 setting was added to the existing section of the configuration file.

If the section you're adding to appears more than once in the config, such as an endpoint and aor named the same in a pjsip.conf file, the section added to
will be the first one defined unless you add a filter qualifier.

Without a qualifier:

This will fail because default_expiration isn't valid for an endpoint

[101]
t ype=endpoi nt
al | ow=ul aw

[101]
t ype=aor
def aul t _expirati on=3600

[101](+)
defaul t _expirati on=1200

With qualifiers:

This works because the filters ensure that the additions are to the correct objects.

[101]
t ype=endpoi nt
al | ow=ul aw

[101]
t ype=aor
defaul t _expirati on=3600

[101] (+t ype=aor)
def aul t _expirati on=1200

[101] (+t ype=endpoi nt)
al | on=g722

You're not limited to filtering by the type parameter and you can even use regular expressions in the name or value.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 91

A weird and not so useful example

[101]
t ype=endpoi nt
al | ow=ul aw

[101]
t ype=aor
def aul t _expirati on=3600

[101] (+defaul t . *=36[0-9][0-9])
defaul t _expirati on=1200

[101] (+t ype=endpoi nt)
al | ow=g722

You can also include multiple filters.

Another weird and not so useful example

[101]
t ype=endpoi nt
al | ow=ul aw

[101]
t ype=aor
defaul t _expirati on=3600

[101] (+t ype=aor &defaul t _. *=36[0-9] [0-9])
def aul t _expirati on=1200

[101] (+t ype=endpoi nt)
al | ow=g722

And finally, you can elect to include or restrict parameters inherited from templates in the search.

The final weird and not so useful example. This will NOT match because default_expiration is
defined in the parent template.

[101]
t ype=endpoi nt
al | on=ul aw

[aor _tenplate](!)
type=aor
def aul t _expirati on=3600

[101] (aor _tenpl ate)

[101] (+TEMPLATES=restri ct &efault _. *=36[0-9][0-9])
def aul t _expirati on=1200

[101] (+t ype=endpoi nt)
al | ow=g722

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

92

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

93

Templates

Another construct we can use within most Asterisk configuration files is the use of templates. A template is a section of a configuration file that is only used
as a base (or template, as the name suggests) to create other sections from.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 94

Template Syntax
To define a section as a template only (not to be loaded for use as configuration by itself), place an exclamation mark in parentheses after the section

heading, as shown in the example below.

[tenpl ate-nane] (!)
setting=val ue

Alternatively the Using Templates page will also discuss how to have a section inherit another section's settings without defining a template. In effect, using
an "active" or "live" configuration section as your template.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 95

Using Templates

To use a template when creating another section, simply put the template name in parentheses after the section heading name, as shown in the example
below. If you want to inherit from multiple templates, use commas to separate the template names).

[tenpl at e- nane] (!)
setting=val ue

[tenpl ate-2] (!)
setting2=val ue2

[not - a-tenpl at e]
setting4=val ue4d

[secti on-nane] (tenpl at e- nane, t enpl at e- 2, not - a-t enpl at e)
setting3=val ue3

This works even when the section name referenced in parentheses is not defined as a template as in the case of the "not-a-template” section.

The newly-created section will inherit all the values and objects defined in the template(s), as well as any new settings or objects defined in the
newly-created section. The settings and objects defined in the newly-created section override settings or objects of the same name from the templates.
Consider this example:

[test-one] (!)
pernit=192. 168. 0. 2

host =al pha. exanpl e. com
deny=192. 168.0. 1

[test-two] (!)
pernit=192.168.1. 2
host =br avo. exanpl e. com
deny=192.168.1.1

[test-three] (test-one,test-two)
perm t=192.168. 3.1
host =char | i e. exanpl e. com

The [test-three] section will be processed as though it had been written in the following way:

[test-three]

perm t=192. 168. 0. 2

host =al pha. exanpl e. com
deny=192.168.0. 1

perm t=192. 168. 1. 2

host =br avo. exanpl e. com
deny=192.168.1.1
pernit=192.168.3.1

host =char | i e. exanpl e. com

chan_sip Template Example

Here is a more extensive and realistic example from the chan_sip channel driver's sample configuration file.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 96

[basi c-options] (!)
dt nf rode=rf c2833
context=fromoffice
type=friend

[nat t ed- phone] (!, basi c- opti ons)
nat =yes
di rect medi a=no
host =dynami c

[public-phone] (!, basi c-options)
nat =no
di rect medi a=yes

[my-codecs] (!)
di sal | ow=al |
al l ow=i | be

al ow=g729
al | ow=gsm
al | ow=g723

al | ow=ul aw

[ul aw phone] (!)
di sal | ow=al |
al | ow=ul aw

a tenpl ate

anot her tenplate inheriting basic-options

anot her tenplate inheriting basic-options

a tenplate for ny preferred codecs

and anot her one for ulawonly

; and finally instantiate a few phones

; [2133] (natted- phone, ny- codecs)
; secret = peekaboo

; [2134] (natt ed- phone, ul aw phone)
; secret = not_very_secret
; [2136] (publ i c-phone, ul aw phone)

; secret = not_very_secret_either

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

97

Database Support Configuration

Top-level page for information about Database support.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

98

Realtime Database Configuration

® [ntroduction
® Two modes: Static and Realtime
Realtime SIP friends
Realtime H.323 friends
New function in the dial plan: The Realtime Switch
Capabilities
Configuration in extconfig.conf
Limitations
FreeTDS supported with connection pooling
Notes on use of the sipregs family

Introduction

The Asterisk Realtime Architecture is a new set of drivers and functions implemented in Asterisk.

The benefits of this architecture are many, both from a code management standpoint and from an installation perspective.

The ARA is designed to be independent of storage. Currently, most drivers are based on SQL, but the architecture should be able to handle other storage
methods in the future, like LDAP.

The main benefit comes in the database support. In Asterisk v1.0 some functions supported MySQL database, some PostgreSQL and other ODBC. With
the ARA, we have a unified database interface internally in Asterisk, so if one function supports database integration, all databases that has a realtime
driver will be supported in that function.

Currently there are three realtime database drivers:

1. ODBC: Support for UnixODBC, integrated into Asterisk The UnixODBC subsystem supports many different databases, please check
www.unixodbc.org for more information.

2. MySQL: Native support for MySQL, integrated into Asterisk

3. PostgreSQL: Native support for Postgres, integrated into Asterisk

Two modes: Static and Realtime

The ARA realtime mode is used to dynamically load and update objects. This mode is used in the SIP and IAX2 channels, as well as in the voicemail
system. For SIP and IAX2 this is similar to the v1.0 MYSQL_FRIENDS functionality. With the ARA, we now support many more databases for dynamic
configuration of phones.

The ARA static mode is used to load configuration files. For the Asterisk modules that read configurations, there's no difference between a static file in the
file system, like extensions.conf, and a configuration loaded from a database.

You just have to always make sure the var_metric values are properly set and ordered as you expect in your database server if you're using the static
mode with ARA (either sequentially or with the same var_metric value for everybody).

If you have an option that depends on another one in a given configuration file (i.e, 'musiconhold' depending on ‘agent' from agents.conf) but their
var_metric are not sequential you'll probably get default values being assigned for those options instead of the desired ones. You can still use the same
var_metric for all entries in your DB, just make sure the entries are recorded in an order that does not break the option dependency.

That doesn't happen when you use a static file in the file system. Although this might be interpreted as a bug or limitation, it is not.

@ To use static realtime with certain core configuration files (e.g. f eat ur es. conf, cdr. conf, cel . conf, i ndi cati ons. conf, etc.) the
realtime backend you wish to use must be preloaded in nodul es. conf .

[modul es]
prel oad => res_odbc. so
prel oad => res_config_odbc. so

Realtime SIP friends
The SIP realtime objects are users and peers that are loaded in memory when needed, then deleted. This means that Asterisk currently can't handle

voicemail notification and NAT keepalives for these peers. Other than that, most of the functionality works the same way for realtime friends as for the ones
in static configuration.

With caching, the device stays in memory for a specified time. More information about this is to be found in the sip.conf sample file.

If you specify a separate family called "sipregs" SIP registration data will be stored in that table and not in the "sippeers" table.

Realtime H.323 friends

Like SIP realtime friends, H.323 friends also can be configured using dynamic realtime objects.

New function in the dial plan: The Realtime Switch

The realtime switch is more than a port of functionality in v1.0 to the new architecture, this is a new feature of Asterisk based on the ARA. The realtime

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 99

switch lets your Asterisk server do database lookups of extensions in realtime from your dial plan. You can have many Asterisk servers sharing a
dynamically updated dial plan in real time with this solution.
Note that this switch does NOT support Caller ID matching, only extension nhame or pattern matching.

Capabilities

The realtime Architecture lets you store all of your configuration in databases and reload it whenever you want. You can force a reload over the AMI,
Asterisk Manager Interface or by calling Asterisk from a shell script with

asterisk -rx "rel oad"

You may also dynamically add SIP and IAX devices and extensions and making them available without a reload, by using the realtime objects and the
realtime switch.

Configuration in extconfig.conf

You configure the ARA in extconfig.conf (yes, it's a strange name, but is was defined in the early days of the realtime architecture and kind of stuck).

The part of Asterisk that connects to the ARA use a well defined family name to find the proper database driver. The syntax is easy:

<fam |ly> => <real tine driver>, <res_<driver>. conf class nane>[, <tabl e>]

The options following the realtime driver identified depends on the driver.
Defined well-known family names are:

sippeers, sipusers - SIP peers and users
sipregs - SIP registrations

iaxpeers, iaxusers - IAX2 peers and users
voicemail - Voicemail accounts
extensions - Realtime extensions (switch)
meetme - MeetMe conference rooms
queues - Queues

queue_members - Queue members
musiconhold - Music On Hold classes
queue_log - Queue logging

Voicemail storage with the support of ODBC described in ODBC Voicemail Storage.

Limitations

Currently, realtime extensions do not support realtime hints. There is a workaround available by using func_odbc. See the sample func_odbc.conf for more
information.

FreeTDS supported with connection pooling

In order to use a FreeTDS-based database with realtime, you need to turn connection pooling on in res_odbc.conf. This is due to a limitation within the
FreeTDS protocol itself. Please note that this includes databases such as MS SQL Server and Sybase. This support is new in the current release.

You may notice a performance issue under high load using UnixODBC. The UnixODBC driver supports threading but you must specifically enable
threading within the UnixODBC configuration file like below for each engine:

Threading = 2

This will enable the driver to service many requests at a time, rather than serially.
Notes on use of the sipregs family
The community provided some additional recommendations on the JIRA issue ASTERISK-21315:

® |tis a good idea to avoid using sipregs altogether by NOT enabling it in extconfig. Using a writable sipusers table should be enough. If
you cannot write to your base sipusers table because it is readonly, you could consider making a separate sipusers view that joins the
readonly table with a writable sipregs table.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 100

https://issues.asterisk.org/jira/browse/ASTERISK-21315

SIP Realtime, MySQL table structure

Here is the table structure used by MySQL for Realtime SIP friends

#
Table structure for table “sipfriends’
#

CREATE TABLE | F NOT EXI STS “sipfriends™ (
“id> int(11) NOT NULL AUTO | NCREMENT,
“nane’ varchar(10) NOT NULL,
“ipaddr® varchar (15) DEFAULT NULL,
“port” int(5) DEFAULT NULL,
‘regseconds’ int(11) DEFAULT NULL,
“defaul tuser® varchar(10) DEFAULT NULL,
“fullcontact”™ varchar(35) DEFAULT NULL,
“regserver” varchar(20) DEFAULT NULL,
“useragent® varchar (20) DEFAULT NULL,
“lastns® int(11) DEFAULT NULL,
“host ™ varchar (40) DEFAULT NULL,
“type’ enun('friend','user','peer') DEFAULT NULL,
“context® varchar(40) DEFAULT NULL,
“permit® varchar (40) DEFAULT NULL,
“deny” varchar (40) DEFAULT NULL,
“secret” varchar(40) DEFAULT NULL,
“md5secret” varchar (40) DEFAULT NULL,
‘renotesecret” varchar(40) DEFAULT NULL,
“transport” enun('udp','tcp','udp,tcp','tcp,udp') DEFAULT NULL,
“dtnf node” enun('rfc2833','info','shortinfo','inband ,'auto') DEFAULT NULL,
“directnmedia’ enun('yes','no','nonat','update') DEFAULT NULL,
“nat” enun('yes','no','never','route') DEFAULT NULL,
“cal l group™ varchar (40) DEFAULT NULL,
" pi ckupgroup® varchar (40) DEFAULT NULL,
“l anguage® varchar (40) DEFAULT NULL,
“allow varchar(40) DEFAULT NULL,
“disall ow varchar(40) DEFAULT NULL,
“insecure’ varchar(40) DEFAULT NULL,
“trustrpid enun('yes','no') DEFAULT NULL,
“progressinband® enun('yes','no','never') DEFAULT NULL,
“promiscredir’ enun('yes','no') DEFAULT NULL,
“useclientcode’ enun('yes','no') DEFAULT NULL,
“account code” varchar (40) DEFAULT NULL,
“setvar® varchar(40) DEFAULT NULL,
“callerid" varchar(40) DEFAULT NULL,
“amafl ags® varchar (40) DEFAULT NULL,
“cal l counter” enun('yes','no') DEFAULT NULL,
“busyl evel © int(11) DEFAULT NULL,
“al | owoverl ap® enun('yes','no') DEFAULT NULL,
“al | owsubscribe® enun('yes','no') DEFAULT NULL,
*vi deosupport” enun('yes','no') DEFAULT NULL,
“maxcal | bitrate® int(11) DEFAULT NULL,
“rfc2833conpensate’ enun('yes','no') DEFAULT NULL,
“mai | box™ varchar (40) DEFAULT NULL,
“session-tinmers’ enun('accept','refuse','originate') DEFAULT NULL,
“session-expires’ int(11) DEFAULT NULL,
“session-minse int(11) DEFAULT NULL,
“session-refresher” enun('uac','uas') DEFAULT NULL,
"t 38pt _usertpsource’ varchar(40) DEFAULT NULL,
“regexten’ varchar(40) DEFAULT NULL,
“fromdomai n® varchar (40) DEFAULT NULL,
“fromuser” varchar (40) DEFAULT NULL,
“qualify’ varchar(40) DEFAULT NULL,
“defaultip® varchar(40) DEFAULT NULL,
‘rtptimeout® int(11) DEFAULT NULL,
“rtphol dtimeout™ int(11) DEFAULT NULL,
“sendrpid’ enun('yes','no') DEFAULT NULL,
“out boundproxy® varchar (40) DEFAULT NULL,
‘cal | backext ension® varchar (40) DEFAULT NULL,
‘registertrying’ enun('yes','no') DEFAULT NULL,
“timertl int(11) DEFAULT NULL,
“timerb’ int(11) DEFAULT NULL,
“qualifyfreq” int(11) DEFAULT NULL,
“constantssrc’ enun('yes','no') DEFAULT NULL,
“contactpernit® varchar(40) DEFAULT NULL,
“contactdeny” varchar(40) DEFAULT NULL,
‘useregphone” enun('yes','no') DEFAULT NULL,
“textsupport® enun('yes','no') DEFAULT NULL,
‘faxdetect”™ enun('yes','no') DEFAULT NULL,
“buggymi © enunt(' yes','no') DEFAULT NULL,
“auth® varchar (40) DEFAULT NULL,
“ful l name™ varchar (40) DEFAULT NULL,
“trunknane’ varchar (40) DEFAULT NULL,
“cid_nunmber® varchar(40) DEFAULT NULL,
“cal lingpres®
enun(' al | owed_not _screened', "' al | oned_passed_screen','al |l owed_failed_screen','allowed',"'prohib_not_screened',' prohib_passed_screen
‘,'prohib_failed_screen','prohib') DEFAULT NULL,
“mohinterpret” varchar(40) DEFAULT NULL,

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 101

“mohsuggest * var char (40) DEFAULT NULL,
“parkinglot® varchar(40) DEFAULT NULL,

“hasvoi cemai | © enun{'yes','no') DEFAULT NULL,
“subscribemwi © enun('yes','no') DEFAULT NULL,
“vmexten® varchar (40) DEFAULT NULL,
“autofranming” enun('yes','no') DEFAULT NULL,
“rtpkeepalive' int(11) DEFAULT NULL,
“call-limt> int(11) DEFAULT NULL,
“g726nonstandard’ enun('yes','no') DEFAULT NULL,
“ignoresdpversion® enun('yes','no') DEFAULT NULL,
“allowtransfer” enun('yes','no') DEFAULT NULL,
“dynanmic’ enun('yes','no') DEFAULT NULL,

PRI MARY KEY (“id"),

UNI QUE KEY “name’ (nane’),

KEY “ipaddr® (“ipaddr’, port’),

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 102

KEY “host® (" host’, "port’)
) ENG NE=MyI SAM

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 103

Sorcery

@ Under Construction On This Page
® Sorcery Overview
® Modules Supporting Sorcery
Sorcery Overview ® Sorcery API Actions
® Sorcery Functions
L[]

Sorcery Mapping Configuration
® Constructing a Mapping
® Format
® Module name
® Object types

Added in Asterisk 12, Asterisk has a data abstraction and object
persistence CRUD API called Sorcery. Sorcery provides Asterisk
modules with a useful abstraction on top of the many storage
mechanisms in Asterisk. Such as the:

® Asterisk Database ® Wizards

® Static Configuration Files ® Example Mapping Configurations

® Asterisk Realtime Architecture ® PJSIP Default Wizard Configurations
* In-Memory

Sorcery also provides a caching service as well as the capability for push
configuration through the Asterisk REST Interface. See the section ARI
Push Configuration for more information on that topic.

In This Section

® Sorcery Caching

Modules Supporting Sorcery

The PJSIP modules and resources were the first to use the Sorcery DAL. All future modules which utilize Sorcery for object persistence must have a
column named id within their schema when using the Sorcery realtime module. This column must be able to contain a string of up to 128 characters in
length.

Sorcery API Actions

AMI actions existing at the time of Asterisk 14.2.1

SorceryMemoryCacheExpire
SorceryMemoryCacheExpireObject
SorceryMemoryCachePopulate
SorceryMemoryCacheStale
SorceryMemoryCacheStaleObject

Sorcery Functions

Sorcery functions existing at the time of Asterisk 14.2.1

* AST_SORCERY()

Sorcery Mapping Configuration

Users can configure a hierarchy of data storage layers for specific modules in sorcery.conf.

You can view the sorcery.conf sample in your configs/samples/ Asterisk source subdirectory. Or you can check it out on github: https://github.com/aste
risk/asterisk/blob/master/configs/samples/sorcery.conf.sample

We've included roughly the same instructions below while taking advantage of wiki formatting.

Constructing a Mapping

To allow configuration of where and how an object is persisted, object mappings can be defined within sorcery.conf on a per-module basis. The
mapping consists of the object type, options, wizard name, and wizard configuration data.

Format

The basic format follows:

[modul e_nane] ; The brackets around the nodul e nane are literal, just as in nost other Asterisk configuration files.
obj ect _type[/options] = wizard_nane[,w zard_configuration_data] ;Bracketed itens here are optional

Module name

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 104

https://wiki/display/AST/Asterisk+14+ManagerAction_SorceryMemoryCacheExpire
https://wiki/display/AST/Asterisk+14+ManagerAction_SorceryMemoryCacheExpireObject
https://wiki/display/AST/Asterisk+14+ManagerAction_SorceryMemoryCachePopulate
https://wiki/display/AST/Asterisk+14+ManagerAction_SorceryMemoryCacheStale
https://wiki/display/AST/Asterisk+14+ManagerAction_SorceryMemoryCacheStaleObject
https://wiki/display/AST/Asterisk+14+Function_AST_SORCERY
https://github.com/asterisk/asterisk/blob/master/configs/samples/sorcery.conf.sample
https://github.com/asterisk/asterisk/blob/master/configs/samples/sorcery.conf.sample

Object/Wizard mappings are defined within sections denoted by the module name in brackets. The section name must match the module.

Object types

Note that an object type can have multiple mappings defined. Each mapping will be consulted in the order in which it appears within the configuration
file. This means that if you are configuring a wizard as a cache it should appear as the first mapping so the cache is consulted before all other
mappings.

Object types available depend on the modules loaded and what objects they provide. There are PJSIP types for all the configuration objects in PJSIP,
such as endpoint, auth,aor, etc. You can find a more exhaustive list of PJSIP objects in the Sorcery Caching page.

Wizards

Wizards are the persistence mechanism for objects. They are loaded as Asterisk modules and register themselves with the sorcery core. All
implementation specific details of how objects are persisted is isolated within wizards.

A wizard can optionally be marked as an object cache by adding "/cache" to the object type within the mapping. If an object is returned from a
non-object cache it is immediately given to the cache to be created. Multiple object caches can be configured for a single object type.

Wizards available at the time of writing:

astdb

config

memory

realtime

memory_cache (For further details on this wizard type see the documentation here)

Example Mapping Configurations

The following object mappings are used by the unit test to test certain functionality of sorcery.

[test_sorcery_section]
t est =menory

[test _sorcery_cache]
test/cache=t est

test =menory

The following object mapping is the default mapping of external MWI mailbox objects to give persistence to the message counts.

[res_mi _external]
mai | boxes=ast db, mni _ext er nal

The following object mappings set PJSIP objects to use realtime database mappings from extconfig with the table names used when automatically
generating configuration from the alembic script.

[res_pjsip]

endpoi nt =real ti me, ps_endpoi nts

aut h=real ti me, ps_aut hs

aor=real tinme, ps_aors

domai n_al i as=real ti me, ps_domai n_al i ases
contact=real ti ne, ps_contacts

[res_pj sip_endpoint _identifier_ip]
identify=realtine, ps_endpoint_id_ips

PJSIP Default Wizard Configurations

When configuring PJSIP sorcery mappings it can be useful to allow both the configuration file and other wizards to be used. The below configuration
matches the default configuration for the PJSIP sorcery usage.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 105

[res_pjsip]

aut h=confi g, pj si p. conf, criteria=type=auth

domai n_al i as=confi g, pj si p. conf, criteria=type=domai n_al i as
gl obal =confi g, pj si p. conf, cri teri a=t ype=gl obal

syst emeconfi g, pj si p. conf, criteria=type=system
transport=config, pj sip.conf,criteria=type=transport

aor =confi g, pj si p. conf, criteria=type=aor

endpoi nt =confi g, pj si p. conf, criteria=type=endpoi nt

cont act =ast db, regi st rator

[res_pjsip_endpoint_identifier_ip]
identify=config, pjsip.conf,criteria=type=identify

[res_pj si p_out bound_publ i sh]
out bound- publ i sh=confi g, pj si p. conf, criteri a=t ype=out bound- publ i sh

[res_pjsi p_out bound_registration]
regi stration=config, pjsip.conf,criteria=type=registration

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

106

Sorcery Caching

Since Asterisk 12, Asterisk has had a generic data access/storage layer called "sorcery", with pluggable "wizards" that each create, retrieve, update, and
delete data from various backends. For instance, there is a sorcery wizard that reads configuration data from .conf files. There is a sorcery wizard that uses
the Asterisk Realtime Architecture to interface with databases and other alternative backends. There are also sorcery wizards that use the AstDB and a
simple in-memory container.

Starting in Asterisk 13.5.0, a new "memory_cache" wizard has been created. This allows for a cached copy of an object to be stored locally in cases where
retrieval from a remote backend (such as a relational database) might be expensive. Memory caching is a flexible way to provide per object type caching,
meaning that you are not forced into an all-or-nothing situation if you decide to cache. Caching also provides configuration options to allow for cached
entries to automatically be updated or expired.

Cachable Objects
Not all configurable objects are managed by sorcery. The following is a list of objects that are managed by the sorcery subsystem in Asterisk.

PJSIP endpoint

PJSIP AOR

PJSIP contact

PJSIP identify

PJSIP ACL

PJSIP resource_list
PJSIP phoneprov

PJSIP registration

PJSIP subscription_persistence
PJSIP inbound-publication
PJSIP asterisk-publication
PJSIP system

PJSIP global

PJSIP auth

PJSIP outbound-publish
PJSIP transport

External MWI mailboxes

On this Page

Cachable Objects
When Should | Use Caching?
How do | enable Caching?
How does the cache behave?
name
maximum_objects
object_lifetime_maximum
object_lifetime_stale
® expire_on_reload
® What AMI and CLI commands does the cache provide?
* CLI
* AMI
® What are some caching strategies?
® Hands-on or hands-off?
® Expire or Stale?
® An example configuration
® Pre-caching all objects
* CLI
* AMI
® When to use this Caching method

When Should | Use Caching?

First, if you are using default sorcery backends for objects (i.e. you have not altered sor cery. conf at all), then caching will likely not have any positive
effect on your configuration. However, if you are using the "realtime" sorcery wizard or any other that retrieves data from outside the Asterisk process, then
caching could be a good fit for certain object types.

There are two overall flavors of caching. The first type is a method that caches individually retrieved objects. In other words, when an object is retrieved
from the backend, that object is also placed in the cache. That object can then be retrieved individually from the cache the next time it is needed. This type
of caching works well for values that are

® Read more often than they are written
® Retrieved one-at-a-time.

For the first point, you will be able to know this better than anyone else. For instance, if you tend to configure PJSIP authentication very infrequently, but

there are many calls, subscriptions, and qualifies that require authentication, then caching PJSIP auths is probably a good idea. If you are constantly
tweaking PJSIP endpoint configuration for some reason, then you might find that caching isn't necessarily as good a fit for PJSIP endpoints.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 107

For the second point, it may not always be obvious which types of objects are typically looked up one-at-a-time and which ones are typically looked up in
multiples. The following object types are likely a bad fit for caching since they tend to be looked up in multiples:

® PJSIP contact

® PJSIP identify

® PJSIP global

® PJSIP system

® PJSIP registrations

® PJSIP ACLs

® PJSIP outbound-publishes

® PJSIP subscription_persistence

The rest of the objects listed are most typically retrieved one-at-a-time and would be good for caching in this manner.

The second type of caching instead pulls all objects from the database up front. These objects are all stored in memory, and since it is known that the
cache has all objects, multiple objects can be retrieved from the cache at once. This means that any object type is a good fit for this type of caching.

How do | enable Caching?

If you are familiar with enabling realtime for a sorcery object, then enabling caching should not seem difficult. Here is an example of what it might look like if
you have configured PJSIP endpoints to use a cache:

sorcery.conf

[res_pjsip]
endpoi nt/ cache=nmenory_cache
endpoi nt =real ti me, ps_endpoi nts

Let's break this down line-by-line. The first line starts with "endpoint/cache". "endpoint" is the name of the object type. "/cache" is a cue to sorcery that the
wizard being specified on this line is a cache. And "memory_cache" is the name of the caching wizard that has been added in Asterisk 14.0.0. The second
line is the familiar line that specifies that endpoints can be retrieved from realtime by following the "ps_endpoints" configuration line in ext confi g. conf.

The order of the lines is important. You will want to specify the memory_cache wizard before the realtime wizard so that the memory_cache is looked in
before realtime when retrieving an item.

How does the cache behave?

By default, the cache will simply store objects in memory. There will be no limits to the number of objects stored in the cache, and the items in the cache
will never be updated or expire, no matter whether the backend has been updated to have new configuration values. The cache entry in sor cery. conf is
configurable, though, so you can modify the behavior to suit your setup. Options for the memory cache are comma-separated on the line in sor cery. con
f that defines the cache. For instance, you might have something like the following:

sorcery.conf

[res_pjsip]
endpoi nt/ cache = menory_cache, maxi mum obj ect s=150, expi re_on_r el oad=yes, obj ect _| i f eti me_nmaxi mrum=3600
endpoi nt = real time, ps_endpoints

The following configuration options are recognized by the memory cache:

name

The name of a cache is used when referring to a specific cache when running an AMI or CLI command. If no name is provided for a cache, then the default
is <configuration section>/<object type>. PJSIP endpoints, for instance, have a default cache name of "res_pjsip/endpoint".

maximum_objects
This option specifies the maximum number of objects that can be in the cache at a given time. If the cache is full and a new item is to be added, then the

oldest item in the cache is removed to make room for the new item. If this option is not set or if its value is set to 0, then there is no limit on the number of
objects in the cache.

object_lifetime_maximum
This option specifies the number of seconds an object may occupy the cache before it is automatically removed. This time is measured from when the

object is initially added to the cache, not the time when the object was last accessed. If this option is not set or if its value is set to 0, then objects will stay in
the cache forever.

object_lifetime_stale

This option specifies the number of seconds an object may occupy the cache until it is considered stale. When a stale object is retrieved from the cache,
the stale object is given to the requestor, and a background task is initiated to update the object in the cache by querying whatever backend stores are

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 108

configured. If a new object is retrieved from the backend, then the stale cached object is replaced with the new object. If the backend no longer has an
object with the same ID as the one that has become stale, then the stale object is removed from the cache. If this option is not set or if its value is 0, then
objects in the cache will never be marked stale.

expire_on_reload
This option specifies whether a reload of a module should automatically remove all of its objects from the cache. For instance, if this option is enabled, and

you are caching PJSIP endpoints, then a module reload of r es_pj si p. so would clear all PJSIP endpoints from the cache. By default this option is not
enabled.

What AMI and CLI commands does the cache provide?
CLI

sorcery memory cache show <cache name>

This CLI command displays the configuration for the given cache and tells the number of items currently in the cache.

sorcery memory cache dump <cache name>

This CLI command displays all objects in the given cache. In addition to the name of the object, the command also displays the number of seconds until the
object becomes stale and the number of seconds until the object will be removed from the cache.

sorcery memory cache expire <cache name> [object name]

This CLI command is used to remove objects from a given cache. If no object name is specified, then all objects in the cache are removed. If an object
name is specified, then only the specified object is removed.

sorcery memory cache stale <cache name> [object_name]

This CLI command is used to mark an item in the cache as stale. If no object name is specified, then all objects in the cache are marked stale. If an object
name is specified, then only the specified object is marked stale. For information on what it means for an object to be stale, see here

AMI

@ Since AMI commands are XML-documented in the source, there should be a dedicated wiki page with this information.

SorceryMemoryCacheExpireObject

This command has the following syntax:

Action:
Cache:
bj ect :

Sor cer yMenor yCacheExpi r eCbj ect
<cache name>
<obj ect name>

Issuing this command will cause the specified object in the specified cache to be removed. Like all AMI commands, an optional ActionID may be specified.

SorceryMemoryCacheExpire

This command has the following syntax:

Action:
Cache:

Sor cer yMenor yCacheExpi re
<cache name>

Issuing this command will cause all objects in the specified cache to be removed. Like all AMI commands, an optional ActionlD may be specified.

SorceryMemoryCacheStaleObject

This command has the following syntax:

Action:
Cache:
oj ect :

Sor cer yMenor yCacheSt al eObj ect
<cache name>
<obj ect name>

Issuing this command will cause the specified object in the specified cache to be marked as stale. For more information on what it means for an object to
be stale, see here. Like all AMI commands, an optional ActionID may be specified.

SorceryMemoryCacheStale

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 109

This command has the following syntax:

Action: SorceryMenoryCacheStal e
Cache: <cache name>

Issuing this command will cause all objects in the specified cache to be marked as stale. For more information on what it means for an object to be stale,
see here. Like all AMI commands, an optional ActionID may be specified.

What are some caching strategies?

Hands-on or hands-off?

The hands-on approach to caching is that you set your cache to have no maximum number of objects, and objects never expire or become stale on their
own. Instead, whenever you make changes to the backend store, you issue an AMI or CLI command to remove objects or mark them stale. The hands-off
approach to caching is to fine-tune the maximum number of objects, stale timeout, and expire timeout such that you never have to think about the cache
again after you set it up the first time.

The hands-on approach is a good fit either for installations where configuration rarely changes, or where there is some automation involved when
configuration changes are made. For instance, if you are setting up a PBX for a small office where you are likely to make configuration changes a few times
a year, then the hands-on approach may be a good fit. If your configuration is managed through a GUI that fires off a script when the "submit" button is
pressed, then the hands-on approach may be a good fit since your scripts can be modified to manually expire objects or mark them stale. The main
disadvantage to the hands-on approach is that if you forget to manually expire a cached object or if you make a mistake in your tooling, you're likely to have
some big problems since configuration changes will seemingly not have any effect.

The hands-off approach is a good fit for configurations that change frequently or for deployments with inconsistent usage among users. If configuration is
changing frequently, then it makes sense for objects in the cache to become stale and automatically get refreshed. If you have some users on the system
that maybe use the system once a week, it makes sense for them to get removed from the cache as more frequent users occupy it. The biggest
disadvantage to the hands-off approach is the potential for churn if your settings are overzealous. For instance, if you allow a maximum of 15 objects in a
cache but it's common for 20 to be used, then the cache may constantly be shuffling which objects are stored in it. Similarly, if you set a stale object timeout
low, then it is possible that objects in the cache will frequently be replacing themselves with identical copies.

There is also a hybrid approach. In the hybrid approach, you're mostly hands-off, but you can be hands-on for "emergency" changes. For instance, if there
is a misconfiguration that is resulting in calls not being able to be sent to a user, then you may want to get that configuration updated and immediately
remove the cached object so that the new configuration can be added to the cache instead.

Expire or Stale?

One question that may enter your mind is whether to have objects expire or whether they should become stale.

Letting objects expire has the advantage that they no longer are occupying cache space. For objects that are infrequently accessed, this can be a good
thing since they otherwise will be taking up space and being useless. For objects that are accessed frequency, expiration is likely a bad choice. This is
because if the object has been removed from the cache, then attempting to retrieve the object will require a cache miss, followed by a backend hit to
retrieve the object. If the object configuration has not been altered, then this equates to a waste of cycles.

Letting objects become stale has the advantage that retrievals will always be quick. This is because even if the object is stale, the stale cached object is
returned. It's left up to a background task to update the cached object with new data from the backend. The main disadvantage to objects being stale is that
infrequently accessed objects will remain in the cache long after their useful lifetime.

One approach to take is a hybrid approach. You can set objects to become stale after an amount of time, and then later, the object will become expired.
This way, objects that are retrieved frequently will stay up to date as they become stale, and objects that are rarely accessed will expire after a while.

An example configuration

Below is a sample sorcery.conf file that uses realtime as the backend store for some PJSIP objects.

sorcery.conf

[res_pjsip]
endpoi nt/cache = nmenory_cache, obj ect _lifetine_stal e=600, obj ect _I i feti me_maxi mun=1800, expi re_on_r el oad=yes
endpoi nt = real tinme, ps_endpoints
aut h/ cache=nenory_cache, expi re_on_r el oad=yes
auth = realtine, ps_aut hs
aor/cache = nenory_cache, object _|ifetinme_stal e=1500, obj ect _| i feti me_maxi mum=1800, expi re_on_r el oad=yes
aor = realtine, ps_aors

In this particular setup, the administrator has set different options for different object caches.

® For endpoints, the administrator decided that cached endpoint configuration may occasionally need updating. Endpoints therefore will be
marked stale after 10 minutes. If an endpoint happens to make it 30 minutes without being retrieved, then the endpoint will be ejected
from the cache entirely.

® For auths, the administrator realized that auth so rarely changes that there is no reason to set any sort of extra parameters. On those odd
occasions where auth is updated, the admin will just manually expire the old auth.

® AORs, like endpoints, may require refreshing after a while, but because the AOR configurations are changed much more infrequently, it

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 110

takes 25 minutes for the object to become stale.
® All objects expire on a reload since a reload likely means that there was some large-scale change and everything should start from
scratch.

This is just an example. It is not necessarily going to be a good fit for everyone's needs.

Pre-caching all objects

When introducing caching, we discussed a second form of caching, where all objects are pre-loaded from the realtime backend and placed in the cache.
Why would this be necessary?

Consider if you have configured AORs to be cached. At some point, Asterisk tried to retrieve AOR "alice". This AOR was found in a database, and it was
added to the cache. Now, Asterisk gets told to retrieve all AORs. If Asterisk just looks in the cache, all it will get is "alice”. The cache has no way of knowing
whether it has all values cached or not. Thus, rather than even asking the cache, Asterisk skips straight to going to the database directly. The cache did not
serve us much good there.

However, Asterisk can be told to pre-load all objects of a certain type and cache those. This way, the cache knows that it has all objects of a certain type.
Therefore, if multiple objects need to be retrieved, Asterisk can ask the cache for those items and not have to hit the realtime backend at all. Here's an
example configuration:

sorcery.conf

[res_pjsip]

identify/cache =

menory_cache, obj ect _|ifetinme_stal e=600, obj ect _|ifeti me_naxi num=1800, expi re_on_r el oad=yes, ful | _backend_cache=y
es

identify = realtime, ps_endpoint_id_ips

Just like with the previous section's configuration, we have configured an object to be retrieved from realtime and cached in memory. Notice, though, that
we have added f ul | _backend_cache=yes to the end of the line. This is what causes Asterisk to pre-cache the objects. Normally, PJSIP "“identify"
objects would be a bad fit for caching since we tend to retrieve them all at once rather than one-at-a-time. By pre-caching all objects though, Asterisk can
now retrieve all of them directly from the cache. Also notice that the other caching options are still relevant here. Rather than having the options apply to
individual objects, they now apply to all of the retrieved objects. So if Asterisk retrieved 10 identifys during pre-cache, when the stale lifetime rolls around,
all 10 will be marked stale and Asterisk will once again retrieve all of the objects from the backend.

CLI

sorcery memory cache populate <cache name>
This CLI command is used to manually tell Asterisk to remove all objects from the cache and repopulate that cache with all objects from the backend.
AMI

SorceryMemoryCachePopulate

This command has the following syntax:

Action: SorceryMenoryCachePopul at e
Cache: <cache name>

Issuing this command has the same effect as the CLI "sorcery memory cache populate” command. It will invalidate all cached entries from the particular
cache and then repopulate it with all objects from the backend.

When to use this Caching method

Pre-caching the entire backend is a good idea if you find that caching individual objects is not working for you. The tradeoff is that you will use more
memory this way since all objects are retrieved from the cache at once.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 111

Asterisk Internal Database

Asterisk comes with a database that is used internally and made available for Asterisk programmers and administrators to use as they see fit.

Asterisk versions up to 1.8 used the Berkeley DB, and in version 10 the project moved to the SQLite3 database. You can read about database migration
between those major versions in the section SQLite3 astdb back-end.

Purpose of the internal database

The database really has two purposes:

1. Asterisk uses it to store information that needs to persist between reloads/restarts. Various modules use it for this purpose automatically.
2. Users can use it to store arbitrary data. This is done using a variety of dialplan applications and functions such as:
® Functions:
DB
DB_DELETE
DB_EXISTS
DB_KEYS
® Application: DBdeltree

The functions and applications for Asterisk 11 are linked above, but you should look at the documentation for the version you have deployed.

Database commands on the CLI

Sub-commands under the command "database" allow a variety of functions to be performed on or with the database.

*CLI > core show hel p dat abase

dat abase del -- Renoves dat abase key/val ue

dat abase del tree -- Renoves dat abase keytree/val ues

dat abase get -- Cets database val ue

dat abase put -- Adds/updat es dat abase val ue

dat abase query -- Run a user-specified query on the astdb
dat abase show -- Shows dat abase contents

dat abase showkey -- Shows database contents

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 112

https://wiki/display/AST/Asterisk+11+Function_DB
https://wiki/display/AST/Asterisk+11+Function_DB_DELETE
https://wiki/display/AST/Asterisk+11+Function_DB_EXISTS
https://wiki/display/AST/Asterisk+11+Function_DB_KEYS
https://wiki/display/AST/Application_DBdeltree

SQLite3 astdb back-end

1 Starting with Asterisk 10 , Asterisk uses SQL.ite3 for its internal database instead of the Berkeley DB database used by Asterisk 1.8 and
* previous versions.

Every effort has been made to make this transition as automatic and painless for users as possible. This page will describe the upgrade process, any
potential problems, and the appropriate solutions to those problems.

The upgrade process

Asterisk 10 will attempt to upgrade any existing old-style Berkeley DB internal database to the new SQLite 3 database format. This conversion process is
accomplished at run-time with the astdb2sqlite3 utility which builds by default in Asterisk 10. The astdb2sqlite3 utility will also be forcibly built even if
deselected using menuselect if the build process determines that there is an old-style Berkeley DB and no new SQLite3 DB exists.

When Asterisk 10 is run, as part of the initialization process it checks for the existence of the SQLite3 database. If it doesn't exist and an old-style Berkeley
DB does exist, it will attempt to convert the Berkeley DB to the SQLite3 format. If no existing database exists, a new SQLite 3 database will be created. If
the conversion fails, a warning will be displayed with instructions describing possible fixes and Asterisk will exit.

(D It is important that you perform the upgrade process at the same permission level that you expect Asterisk to run at. For example, if you upgrade
as root, but run Asterisk as a user with lower permissions, the SQLite3 database created as part of the upgrade will not be able to be accessed

by Asterisk.

Troubleshooting an upgrade

Symptoms

Jconfigure displays the warning: *** Please install the SQLite3 development package.

Cause

To build Asterisk 10, the SQLite 3 development libraries must be installed.

Solution

On Debian-based distros including Ubuntu, these libraries may be installed by running ‘sudo apt-get install libsglite3-dev'. For Red
Hat-based distros including Fedora and Centos these libraries may be installed by running (as root) 'yum install sqlite3-devel'.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 113

Asterisk exits displaying the warning: *** Database conversion failed!

Cause

Asterisk 10 could not find the astdb2sqlite3 utility to convert the old Berkeley DB to SQLite 3.

Solution

Make sure that astdb2sqlite3 is selected for build in the Utilities section when running 'make menuselect'. Be sure to re-run 'make’ and 'make
install' after selecting astdb2sqlite3 for build.

Cause

Asterisk is unable to write to the directory specified in asterisk.conf as the 'astdbdir’

Solution

SQLite 3 creates a journal file in the ‘astdbdir' specified in asterisk.conf. It is important that this directory is writable by the user Asterisk runs
as. This involves either modifying the permissions of the ‘astdbdir' directory listed in asterisk.conf, or changing the "astdbdir' option to a
directory for which the user running Asterisk already has write permission. This is generally only a problem if Asterisk is run as a non-root
user.

Cause

If Asterisk 10 was installed via a distro-specific package, it is possible that the distro forgot to package the astdb2sqlite3 utility.

Solution

Run 'which astdb2sqglite3' from a terminal. If no filenames are displayed, then astd2sqlite3 has not be installed. Check if the distro includes it
in another asterisk related package, or download the Asterisk 10 source from the Asterisk.org website and follow the normal build
instructions. Instead of running 'make install', manually run 'utils/astdb2sqlite3 /var/lib/asterisk/astdb’ from the Asterisk source directory,
replacing '/var/lib/asterisk' with the 'astdbdir' directory listed in asterisk.conf. After the conversion, the distro-supplied Asterisk should
successfully run.

Migrating back from Asterisk 10 to Asterisk 1.8

If migrating back to Asterisk 1.8 from Asterisk 10, it is possible to convert the SQLite 3 internal database back to the Berkeley DB format that Asterisk 1.8
uses by using the astdb2bdb utility found in the utils/ directory of the Asterisk 10 source. To build, make sure that astdb2bdb is selected in the Utilities
section when running 'make menuselect'. Running 'utils/astdb2bdb /var/lib/asterisk/astdb.sqlite3' (replacing '/var/lib/asterisk' with the 'astdbdir' directory
listed in asterisk.conf) will produce a file named 'astdb’ in the current directory. Back up any existing astdb file in the astdbdir directory and replace it with
the newly created astdb file.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 114

http://downloads.asterisk.org/pub/telephony/asterisk

Key Concepts

(D Under Construction

1 Top-level page for a section dealing with concepts of the key moving pieces in Asterisk that an administrator needs to understand. Channels,
“ Bridges, Frames, etc.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 115

Bridges

Overview

In Asterisk, a bridge is the construct that shares media among Channels. While a channel represents the path of communication between Asterisk and
some device, a bridge is how that path of communication is shared. While channels are in a bridge, their media is exchanged in a manner dictated by the

bridge's type. While we generally think of media being directed among channels, media can also be directed from Asterisk to the channels in a bridge. This
can be the case in some conferences, where Music on Hold (MoH) or announcements are played for waiting channels.

On this Page

Creation

Generally, a bridge is created when Asterisk knows that two or more channels want to communicate. A variety of applications and API calls can cause a
bridge to be created. Some of these include:

® Dial - a bridge is created for the two channels when the outbound channel answers. Both the inbound channel and the outbound channel

are placed into the bridge.
® DTMF feature invocations available from Dial() can create, modify, or destroy bridges.
® Bridge - this directly creates a new bridge and places two channels into the bridge. Unlike Dial, both channels have to already exist.

® BridgeWait (Asterisk 12+) - creates a special holding bridge and places a channel into it. Any number of channels may join the holding

bridge, which can entertain them in a variety of ways.
* MeetMe/ConfBridge - both of these applications are used for conferencing, and can support multiple channels together in the same

bridge.
Page - a conferencing bridge (similar to MeetMe/ConfBridge) is used to direct the audio from the announcer to the many dialed channels.

Parking (Asterisk 12+) - a special holding bridge is used for Parking, which entertains the waiting channel with hold music.

@ Asterisk 12+: Bridging Changed
In Asterisk 12, the bridging framework that ConfBridge was built on top of was extended to all bridges that Asterisk creates (with the exception of

MeetMe). There are some new capabilities that this afforded Asterisk users; where applicable, this page will call out features that only apply to
Asterisk 12 and later versions.

Destruction

Channels typically leave a bridge when the application that created the bridge is terminated (such as a conference leader ending a ConfBridge conference)
or when the other side hangs up (such as in a two-party bridge created by Dial). When channels leave a bridge they can continue doing what they were
doing prior to entering the bridge, continue executing dialplan, or be hung up.

Types

There are many types of bridges in Asterisk, each of which determine how the media is mixed between the participants of the bridge. In general, there are
two categories of bridge types within Asterisk: two party and multiparty. Two party bridge variants include core bridges, local native bridges, and remote
native bridges. Multiparty bridge variants include mixing and holding.

@ Asterisk 12+: Bridges are Smart
In Asterisk 12, the bridging framework is smart! It will automatically choose the best mixing technology available based on the channels in the

bridge and - if needed - it will dynamically change the mixing type of the bridge based on conditions that occur. For example, a two-party core
bridge may turn into a multiparty bridge if an attended transfer converges into a three-way bridge via the at xf er t hr eeway DTMF option.

Two-Party

A two-party bridge shares media between two channels. Because there are only two participants in the bridge, certain optimizations can take place,
depending on the type of channels in the bridge. As such, there are "sub-types" of two-party bridges that Asterisk can attempt to use to improve

performance.
Core
A core bridge is the basic two-party bridge in Asterisk. Any channel of any type can communicate with any channel of any other type. A core bridge can

perform media transcoding, media manipulation, call recording, DTMF feature execution, talk detection, and additional functionality because Asterisk has
direct access to the media flowing between channels. Core bridges are the fallback when other types of bridging are not possible due to limiting network

factors, configuration, or functionality requirements.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 116

https://wiki/display/AST/Asterisk+11+Application_Dial
https://wiki/display/AST/Asterisk+11+Application_Bridge
https://wiki/display/AST/Asterisk+13+Application_BridgeWait
https://wiki/display/AST/Application_MeetMe
https://wiki/display/AST/Asterisk+11+Application_ConfBridge
https://wiki/display/AST/Asterisk+11+Application_Page
https://wiki/display/AST/Asterisk+13+Application_Park

Asterisk

Asterisk Core

A

Call Control
and Media

v

Channel Driver

Signaling Son
lgnaling Signalin
and Media ang Mediga

l l

Endpoint A EndpointB

Native

A native bridge occurs when both participants in a two-party bridge have similar channel technologies. When this occurs, Asterisk defers the transfer of
media to the channel drivers/protocol stacks themselves, and simply monitors for the channels leaving the bridge (either due to hangup, time-out, or some
other condition). Since media is handled in the channel drivers/protocol stacks, no transcoding, media manipulation, recording, DTMF, or other features
depending on media interpretation can be done by Asterisk. The primary advantage to native bridging is higher performance.

The following channel technologies support native bridging:

® RTP capable channel drivers (such as SIP channels)
* DAHDI channels
® |AX2 channels (Asterisk 11-)

@ Asterisk 12+ IAX2 Native Bridging is Gone
As it turned out, IAX2 native bridging was not much more efficient than a standard core bridge. In an IAX2 native bridge, the media
must still be handled a good bit, i.e., placed into internal Asterisk frames. As such, when the bridging in Asterisk was converted to the
new smart bridging framework, the IAX2 native bridge did not survive the transition.

Local
A local native bridge occurs when the media between two channels is handled by the channel drivers/protocol stacks themselves, but the media is still sent

from each device to Asterisk. In this case, Asterisk is merely proxying the media back and forth between the two devices. Most types of native bridging in
Asterisk are local.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 117

Asterisk

Asterisk Core

A

Call Control
only

v

Channel Driver ‘

Si li
lgnaling Signalin
and Media ang Mediga

l l

Endpoint A EndpointB

Remote

A remote native bridge occurs when the media between two channels is redirected by Asterisk to flow directly between the two devices the channels talk to.
When this occurs, the media is completely outside of Asterisk. With SIP channels, this is often called "direct media". Not surprisingly, since the media is
flowing outside of Asterisk, this bridge has the best performance in Asterisk. However, it can only be used in certain circumstances:

® Both channels in the native bridge must support direct media.
® The devices communicating with Asterisk cannot be behind a NAT (or otherwise obscured with a private IP address that the other device

cannot resolve).

Only SIP channels support this type of native bridge.

Asterisk

Asterisk Core

A

Call Control
only

v

Channel Driver ‘

Signaling
Signaling
only only
Media
& N >
Endpoint A EndpointB
Multiparty

Multiparty bridges interact with one or more channels and may route media among them. This can be thought of as an extension to two-party core bridging
where media from multiple channels is merged or selected to be forwarded to the channels participating in the bridge. These bridges can have some, all, or
none of the extended features of two-party core bridges depending on their intended use.

Mixing

There are several ways to access mixing multiparty bridges:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 118

® MeetMe - This is a legacy conference bridge application and relies on DAHDI. This type of conference is limited to narrow band audio.

® ConfBridge (Asterisk 11+) - This is a conference bridge application based that supports wide band mixing.

® Ad-hoc Multiparty Bridges (Asterisk 12+) - Some DTMF features like 3-way attended transfers can create multiparty bridges as
necessary.

Holding

Holding bridges are only available in Asterisk 12+ and provide a waiting area for channels which you may not yet be prepared to process or connect to
other channels. This type of bridge prevents participants from exchanging media, can provide entertainment for all participants, and provides the ability for
an announcer to interrupt entertainment with special messages as necessary. Entertainment for waiting channels can be MoH, silence, ringing, hold, etc..
Holding bridges can be accessed via BridgeWait or ARI.

Asterisk

Asterisk Core

A

Call Caontrol
and Media

v

Channel Driver

Si li
ignaling g li
and Media a;g”ﬁ;g?a
l Signaling l
and
V " 0
Endpoint A EndpointB

&

Endpaoint C

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 119

https://wiki/display/AST/Application_MeetMe
https://wiki/display/AST/Asterisk+11+Application_ConfBridge
https://wiki/display/AST/Asterisk+13+Application_BridgeWait
https://wiki/download/attachments/29395597/ARI%20-%20Asterisk%20channel%20to%20endpoint?version=1&modificationDate=1408639733546&api=v2

Channels
Asterisk Channels

Almost nothing happens in Asterisk without a channel being involved. A channel is an entity inside Asterisk that acts as a channel of communication
between Asterisk and another device. That is, a phone, a PBX, another Asterisk system, or even Asterisk itself (in the case of a local channel).

Our documentation and many Asterisk users speak about channels in terms of "calls". A call can be one or more channels creating a path of
communication or activity through the Asterisk system.

To give you an idea about what channels do, here are a few facts about them:

Channel Drivers provide channels in Asterisk.

Channels can interface with each other through bridges.

Applications and functions can affect the state or attributes of a channel or its media stream.

Channels are commonly passing audio between communication endpoints, but can pass other data, such as video or text messages.
Channels execute instructions with dialplan, but can be controlled by other APIs (AGI,AMI,ARI) or interfaces (CLI).

Common Asterisk Channels

One of the many benefits of Asterisk is the capability to interface with as many different technologies as you have channel drivers! However, most
administrators will only make use of a few types at a time.

Here are a few commonly used channel types:

® A SIP channel driver such as chan_sip or chan_pjsip.
® DAHDI channels provided by chan_dahdi.
® Local channels provided by chan_local. (This was moved into the core in Asterisk 12)

SIP channels are used to interface with SIP capable VOIP devices, such as phones, channel banks, other PBXs or Internet Telephony Service Providers.

DAHDI channels are used to interface with DAHDI drivers and PRI libraries. In this case chan_dahdi allows you to use any DAHDI capable devices, such
as Digium's line of T1/E1/J1 interface cards.

Local channels are used for dialing inward to the system itself, allowing any Asterisk component that can dial to call directly into dialplan. This provides a
sort of "fake" call that still executes real instructions.

® Asterisk Channels

® Configuring Channels

® Using, Controlling and Routing Channels
[]

[]

Inbound and Outbound Channels
Channel Variable Inheritance

Configuring Channels

Text File Configuration

Most channel drivers have an associated configuration file. Some channels may require the configuration of dependent resources for optimal operation. For
example, SIP channels, configured in sip.conf or pjsip.conf use RTP resources which can be configured in rtp.conf.

The Channel Drivers configuration section contains information on configuring documented channel drivers. In other cases the configuration file itself

contains configuration documentation.

Database Configuration

Flat text configuration isn't the only option. A few channel drivers provide support for the ARA (Asterisk Realtime Architecture) and can therefore pull
configuration from a local or remote database. Use of the ARA requires configuration of additional resources and dependencies outside the channel drivers
themselves.

Using, Controlling and Routing Channels

Once you have a channel driver configured, how does it get used? When do channels get created?
Here are a few scenarios where a channel could get created:

® A device configured in the channel driver communicates to Asterisk (e.g. over a network) that it wants to make a call.

® A user executes a command (such as Originate) to create a new channel.

® An existing channel executes dialplan that calls an application (such as Dial) to create a new channel.

® Asterisk receives API calls that create a new channel or channels.

Once a channel is established, the events that occur are channel technology-dependent. That is, whether audio, video or other data communication begins
over the channel will depend on signaling that occurs over SIP, ISDN, H.323 or other protocols implemented via the channel driver.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 120

When Asterisk has established a channel, Asterisk will use a combination of channel driver configuration and dialplan instruction to determine how the
channel behaves. On top of that Asterisk can communicate with external programs synchronously or asynchronously to receive API calls for channel
inspection, direction or manipulation.

Once channels are established and communicating between devices and Asterisk; where that data flows to depends on the channel type itself, its overall
configuration, device specific configuration, signaling sent by the originating mechanism (a device, a command, an API call) and associated bridges. One or
more channels could be talking to one or more channels over various bridges. What specifically Asterisk talks to on each channel is limited only by the
technology implemented by the channel driver.

Inbound and Outbound Channels

Often in our documentation, troubleshooting and development discussions you'll see mention of inbound or outbound channels. It'll be helpful to define
what that means here.

Inbound channels are channels created when things outside of Asterisk call into Asterisk. This is typically the channel executing Dialplan.
Outbound channels are channels created when Asterisk is calling out to something outside Asterisk.

The primary exception is with Local Channels. In the case of local channels, you'll typically have two local channel legs, one that is treated as outbound and
the other as inbound. In this case both are really inside Asterisk, but one is executing dialplan and the other is not. The leg executing dialplan is the one
treated as inbound.

Below we'll diagram a few examples for clarity.

- Two channels bridged . Originate Channel to
Fig 1 from a typical Dial Fig 2 Application
Asterisk Asterisk

Application

Channel A

Outbound until
answered

Inbound after (‘0

answered ALICE

ALICE Channel B

Fig 3 SIP to SIP via non-optimized Local Channels

Asterisk

The figures have been kept somewhat generic and should apply to most channel types. Each figure shows the final state of the call, rather than a sequence
of events.

Below are explanations of the various figures.

Fig 1
One phone dials another phone; about as simple as it gets.

The inbound channel is created from Alice's phone calling Asterisk. Asterisk then calls the extension dialed by Alice by creating an outbound channel to
talk to Bob. Once the call is established the two channels are put into a bridgeBridges.

Fig 2

A user runs the originate command from AMI, or maybe something like "channel originate SIP/Alice application playback demo-congrats" from the CLI.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 121

https://wiki/display/AST/Asterisk+11+Application_Originate

Asterisk creates an outbound channel to call the device specified (SIP/Alice). When answered, Asterisk begins treating the channel like an inbound chann
el and connects it to the specified dialplan application.

Fig 3

Perhaps a user runs originate again - but this time "channel originate SIP/Alice extension dialbob@internal" from the CLI. Where dialbob@internal contains
dialplan telling Asterisk to dial outbound to SIP/Bob. At first, the created outbound channel would look like Fig 2 where it begins to be treated as inbound
after the device answers the call. At that point, a number of things happen:

® Asterisk creates an outbound local channel into Asterisk and bridges it with the now inbound channel to Alice.

® Asterisk creates another leg of local channel as "inbound" into Asterisk to execute the dialplan at the extension specified with the
originate. This local channel is essentially bridged with some magic to the other local channel.

® In our case the dialplan executes something like Dial(SIP/Bob), so the new SIP channel is created to communicate with SIP/Bob and is
then bridged with the inbound local channel. Now communication flows across the whole path.

For this example demonstrating relationships between channels and other elements we used non-optimized local channels. If the local channels are
optimized, then they will optimize themselves out of this mix and Alice and Bob's channels would be bridged together directly.

Channel Variable Inheritance

When working with channels you'll almost certainly be touching channel variables. It is useful to note that upon setting a channel variable the level of
inheritance between channels can be defined. This is discussed in the Channel Variables sub-section Variable Inheritance.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 122

Frames

@ Under Construction

1 Top-level page for talking about frames, frame-hooks/audio-hooks.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 123

Audiohooks

Overview

Certain applications and functions are capable of attaching what is known as an audiohook to a channel. In order to understand what this means and how
to handle these applications and functions, it is useful to understand a little of the architecture involved with attaching them.

Introduction - A Simple Audiohook

Asterisk
SIP Device
Phonel

Audio Source f
Bridge

Channel SIFIPhone L-xxooooox

FITCH_SHIFT
& Ldio Hook

In this simple example, a SIP phone has dialed into Asterisk and its channel has invoked a function (pitch_shift) which has been set to cause all audio sent
and received to have its pitch shifted higher (i.e. if the audio is voice, the voices will sound squeaky sort of like obnoxious cartoon chipmunks). The
following dialplan provides a more concrete usage:

exten => 1,1, Answer ()
exten => 1,n, Set (Pl TCH_SHI FT(bot h) =hi gher)
exten => 1, n, Voi cenai | (501)

When a phone calls this extension, it will be greeted by a higher pitched version of the voicemail prompt and then the speaker will leave a message for 501.
The sound going from the phone to voicemail will also be higher pitched than what was actually said by the person who left the message.

Right now a serious minded Asterisk user reading this example might think something along the lines of 'So what, | don't have any use for making people
using my phone system sound like squirrels.” However, audiohooks provide a great deal of the functionality for other applications within Asterisk including
some features that are very business minded (listening in on channels, recording phone calls, and even less spy-guy type things like adjusting volume on
the fly)

It's important to note that audiohooks are bound to the channel that they were invoked on. They don't apply to a call (a call is actually a somewhat nebulous
concept in general anyway) and so one shouldn't expect audiohooks to follow other channels around just because audio that those channels are involved
with touches the hook. If the channel that created the audiohook ceases to be involved with an audio stream, the audiohook will also no longer be involved
with that audio stream.

Attended Transfers and AUDIOHOOK INHERIT

Asterisk

SIP Device SIP Device
Phonel 6] I‘> Phone2
§<Channel SIPIPhone - > Bridge Channel SIPIPhone2-xxxxxx

Q

PITCH_SHIFT

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 124

exten => 1,1, Answer ()
exten => 1,n, M xMonitor(training_recordi ng. wav)
exten => 1, n, Queue(techsupport)

Imagine the following scenario. An outside line calls into an Asterisk system to enter a tech support queue. When the call starts this user hears something
along the lines of "Thank you for calling, all calls will be recorded for training purposes”, so naturally MixMonitor will be used to record the call. The first
available agent answers the call and can't quite seem to provide a working solution to the customer's problem, so he attempts to perform an attended
transfer to someone with more expertise on the issue. The user gets transfered, and the rest of the call goes smoothly, but... ah nuts. The recording
stopped for some reason when the agent transferred the customer to the other user. And why didn't this happen when he blind transferred a customer the
other day?

The reason MixMonitor stopped is because the channel that owned it died. An Asterisk admin might think something like "That's not true, the mixmonitor
was put on the customer channel and its still there, | can still see it's name is the same and everything." and it's true that it seems that way, but attended
transfers in particular cause what's known as a channel masquerade. Yes, its name and everything else about it seems like the same channel, but in reality
the customer's channel has been swapped for the agent's channel and died since the agent hung up. The audiohook went with it. Under normal
circumstances, administrators don't need to think about masquerades at all, but this is one of the rare instances where it gets in the way of desired
behavior. This doesn't affect blind transfers because they don't start the new dialog by having the person who initiated the transfer bridging to the end
recipient.

Working around this problem is pretty easy though. Audiohooks are not swapped by default when a masquerade occurs, unlike most of the relevant data on
the channel. This can be changed on a case by case basis though with the AUDIOHOOK_INHERIT dialplan function.

Using AUDIOHOOK_INHERT only requires that AUDIOHOOK_INHERIT(source)=yes is set where source is the nhame given for the source of the
audiohook. For more information on the sources available, see the description of the source argument in the documentation for AUDIOHOOK_INHERIT.

So to fix the above example so that mixmonitor continues to record after the attended transfer, only one extra line is needed.

exten => 1,1, Answer ()

exten => 1,n, M xMonitor(training_recordi ng. wav)
exten => 1, n, Set (AUDI OHOOK_| NHERI T(M xMbni t or) =yes)
exten => 1, n, Queue(techsupport)

Below is an illustrated example of how the masquerade process impacts an audiohook (in the case of the example, PITCH_SHIFT)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 125

Initial Call Sewp

Phone 1

Channel SIPIPhone 1-xxxxxxxx

PITCH_SHIFT

Phone 2
Bridge Channel SIPIPhone2-xxxxxxx0

SIP/Phone2 attempis starts to attended ransfer SIF/Phonel to SIP/Phone3

Phone 2'

Channel SIPIPhone2-xxxxxxxl

Phone 3
Bridge Channel SIPIPhone3-xxooooo

Phone 2 hangs up on Phone 3, initiating the wansfer. This requires a masquerade.

Phone 1 Phone 2
Channel SIPIPhone 1-xoooooo Bridge Channel SIPIPhone2-kxxoxxd
FAY
%%;‘1(% ﬁqﬁ
4? Whether the audiohook gets swapped with the rest of
2 PITCH_SHIFT the relevant channel components depends on
= AUDIOHOOK_INHERIT
g Blue Arrow means:
3 ALDIOHOOK_IMHERIT(PITCH_SHIFT) = yes
ra The audiohook swaps to the other bridge along with
g' the rest of the channel
1]
ﬁ Without ALDIOHOOK_INHERIT,
2 it doesn't swap during the masquerade and Phone 2
;ﬂ takes it over
Phone 2' Phone 3
Channel SIPIPhone2-xxeoox 1 Bridge Channel SIPIPhone3-xxxxxx

Bridges after Transfer: Without AUDIOHOOK_INHERIT(PITCH_SHIFT)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

126

After the masquerade, the bridge consists of Phone2's two channels talking to eachother. Phone 2 has
already hung up, so this dialog will be ending nearly immediately.

Phone 2' Phone 2
Channel SIFIPhone2-mooooo Bridge Channel SIFIPhone2-woooood

The audiohook gets |eft behind
during the masquerade, so it's no
longerwith phonel and got left
behind on a dying channel

PITCH_SHIFT

Phone 1 lostthe audio hook because it didnt get swapped in the masguerade

Phone 1 Phone 3

Channel SIPIPhone 1-xxsoxx Bridge Channel SIPIPhone3-xKxxo

NO SQUEAK FOR YOU!

Bridges after Transfer: With AUDIOHOOK _INHERIT(PITCH_SHIFT)

Again, this bridge is still just phone2 talking to itself now. Phone 2 already hung up and this
bridge is in the process of ending

Phone 2 Phone 2
Channel SIPIPhone2-wxoooo 1 Bridge Channel SIPIPhone2-xxxxxxx0

Since ALUDIOHOOK_INHERIT was enabled, the audiohook came along with Phonel's channel.

Phone 1 Phone 3

Channel SIFIPhone L0000 Bridge Channel SIFIPhone3-xo0oaoo

PITCH_SHIFT Yay! The call
Audio Hook continues to sound
squeaky.

Inheritance of audiohooks can be turned off in the same way by setting AUDIOHOOK_INHERIT(source)=no.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

127

Audiohook Sources

Audiohooks have a source name and can come from a number of sources. An up to date list of possible sources should always be available from the
documentation for AUDIOHOOK_INHERIT.

Limitations for transferring Audiohooks

Even with audiohook inheritance set, the MixMonitor is still bound to the channel that invoked it. The only difference in this case is that with this option set,
the audiohook won't be left on the discarded channel through the masquerade. This option doesn't enable a channel running mixmonitor to transfer the
MixMonitor to another channel or anything like that. The dialog below illustrates why.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 128

Phone 1

Channel SIPIPhone 1-xxxxxxx0

PITCH_SHIFT

Initial state of the bricdge

Bridge

Phone 2

Channel SIPIPhone2-xxxxxxxx

Phone 1 starts an attended transfer to Phone 3

Phone 1'

Channel SIPIPhone 1-xocxxxx L

Resulting dialog

Bridge

Phone 3

Channel SIPIPhone3-xxxxxxms

Phone 1 hangs up on Phone 3 initiating the masquerade

Phone 1

Channel SIPIPhone 1-xxxxxxx0

Phone 1'

Channel SIPIPhone 1-xocxxxx L

Resulting dialog

Bridge

Bridge

Phone 2

Channel SIPIPhone2-xxxxxxxx

The sudichook isn't
going to go anywhere
since it isn't on one of
the channels being
swapped

Phone 3

Channel SIPIPhone3-xxxxxsxx

Final status of the bridges

Phone 1's two channels are now bridged to one another, but Phone 1 has hung up already
and this bridge is going to die soon.

Phone 1
Channel SIPIPhone L-xxxxxoxox0

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

Bridge

Phone 1'
Channel SIPIPhone L-xxxoxxxs 1

129

Phone 2

Channel SIPIPhone2-xxxxxxxx

Bridge

There are no conditions forwhich the other bridge will ever have the audiohook since
itwasn't owned by either channel involved with the masquerade.

Phone 3

Channel SIPIPhone3-xxxxxxxx

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

130

States and Presence

Asterisk includes the concepts of Device State , Extension State and Pre i i
sence State which together allow Asterisk applications and interfaces to In This Section
receive information about the state of devices, extensions and the users
of the devices.

Device State
Extension State and Hints
Presence State

As an example, channel drivers like chan_sip or res_pjsip/chan_pjsip]))
Querying and Manipulating State

may both provide devices with device state, plus allow devices to subscri
be to hints to receive notifications of state change. Other examples
would be app_queue which takes into consideration the device state of See Also
queue members to influence queue logic or the Asterisk Manager

Interface which provides actions for querying extension state and Distributed Device State

presence state.

Publishing Extension State

Exchanging Device and Mailbox State Using PJSIP

Additionally, modules exist for Corosync and XMPP PubSub support to allow device state to be shared and distributed across multiple systems.

The sub-sections here describe these concepts, point to related module specific configuration sections and discuss Querying and Manipulating State in
formation.

The figure below may help you get an idea of the overall use of states and presence with the Asterisk system. It has been simplified to focus on the
flow and usage of state and presence. In reality, the architecture can be a bit more confusing. For example a module could both provide subscription
functionality for a subscriber and be the same module providing the devices and device state on the other end.

ASTERISK
Modules providing) (CORE) ' o) '
subscription functionality Modules providing device
or presence state
providers

Extension

4 ;
Subscriptions f AR ™~
@‘__ for Extension or = l‘)
Presence state ke Device or
I Presence States
/
L "{ {)
Asterisk Dialplan % |
o . Functions and API calls / User setting presence
User viewing device or = / state, or using device
presence states on device . v (causing device state
display e — - changes)

Other modules and
components querying
state providers. e.g.
app_gueue

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 131

Device State
Devices

Devices are discrete components of functionality within Asterisk that serve a particular task. A device may be a channel technology resource, such as
SIP/<name> in the case of chan_sip.so or a feature resource of another module such as app_confbridge.so which provides devices like
confbridge:<name>.

State information

Asterisk devices make state information available to the Asterisk user, such that a user might make use of the information to affect call flow or behavior of
the Asterisk system. The device state identifier for a particular device is typically very similar to the device name. For example the device state identifier for
SIP/6001 would be SIP/6001, for confbridge 7777 it would be confbridge:7777. Device states have a one-to-one mapping to the device they represent. That
is opposed to other state providers in Asterisk which may have one-to-many relationships, such as Extension State.

The Querying and Manipulating State section covers how to access or manipulate device state as well as other states.

Common Device State Providers

Device state providers are the components of Asterisk that provide some state information for their resources. The device state providers available in
Asterisk will depend on the version of Asterisk you are using, what modules you have installed and how those modules are configured. Here is a list of the
common device state identifiers you will see and what Asterisk component provides the resources and state.

On this Page
® Devices
® State information
® Common Device State Providers
® Custom Device States
® Possible Device States
® Module Specific Device State
Device State Identifier Device State Provider
PJSIP/<resource> PJSIP SIP stack, res_pjsip.so, chan_pjsip.so.
SIP/<resource> The older SIP channel driver, chan_sip.so.
DAHDI/<resource> The popular telephony hardware interface driver, chan_dahdi.so.
IAX2/<resource> Inter-Asterisk Exchange protocol! chan_iax2.so.

ConfBridge:<resource> The conference bridge application, app_confbridge.so.
MeetMe:<resource> The older conference bridging app, app_meetme.so.

Park:<resource> The Asterisk core in versions up to 11.
res_parking.so in versions 12 or greater.

Calendar:<resource> res_calendar.so and related calendaring modules.

Custom:<resource> Custom device state provided by the asterisk core.

Note that we are not differentiating any device state providers based on what is on the far end. Depending on device state provider, the far end of signaling
for state could be a physical device, or just a discrete feature resource inside of Asterisk. In terms of understanding device state for use in Asterisk, it
doesn't really matter. The device state represents the state of the Asterisk device as long as it is able to provide it regardless of what is on the far end of the
communication path.

Custom Device States
The Asterisk core provides a Custom device state provider (custom:<resource>) that allows you to define arbitrary device state resources. See the Queryin

g and Manipulating State section for more on using custom device state.

Possible Device States

Here are the possible states that a device state may have.

UNKNOWN
NOT_INUSE
INUSE
BUSY
INVALID

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 132

UNAVAILABLE
RINGING
RINGINUSE
ONHOLD

Though the label for each state carries a certain connotation, the actual meaning of each state is really up to the device state provider. That is, any
particular state may mean something different across device state providers.

Module Specific Device State

There is module specific configuration that you must be aware of to get optimal behavior with certain state providers.
For chan_sip see the chan_sip State and Presence Options section.

For res_pjsip see the Configuring res_pjsip for Presence Subscriptions section.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 133

Extension State and Hints

Overview

Extension state is the state of an Asterisk extension, as opposed to the direct state of a device or a user. It is the aggregate of Device state from devices
mapped to the extension through a hint directive. See the States and Presence section for a diagram showing the relationship of all the various states.

Asterisk's SIP channel drivers provide facilities to allow SIP presence subscriptions (RFC3856) to extensions with a defined hint. With an active
subscription, devices can receive notification of state changes for the subscribed to extension. That notification will take the form of a SIP NOTIFY with
PIDF content (RFC3863) containing the presence/state information.

Defining Hints

For Asterisk to store and provide state for an extension, you must first define a hint for that extension. Hints are defined in the Asterisk dialplan, i.e.
extensions.conf,

When Asterisk loads the configuration file it will create hints in memory for each hint defined in the dialplan. Those hints can then be queried or manipulated
by functions and CLI commands. The state of each hint will regularly be updated based on state changes for any devices mapped to a hint.

The full syntax for a hint is

exten = <extension>, hint, <device state id> & <nore dev state id], <presence state id>

Here is what you might see for a few configured hints.

[internal]

exten = 6001, hint, SIP/Alice&SIP/Alice-nobile
exten = 6002, hi nt, SI P/ Bob

exten = 6003, hint, SI P/ Charl i e&DAHDI / 3

exten = 6004, hint, SI P/ Di ane, Cust onPresence: Di ane
exten = 6005, hint,, Cust onPresence: El | en

Things of note:

® You may notice that the syntax for a hint is similar to a regular extension, except you use the hint keyword in place of the priority.
Remember these special hint directives are used at load-time and not during run-time, so there is no need for a priority.

® Multiple devices can be mapped to an extension by providing an ampersand delimited list.

® A presence state ID is set after the device state IDs. If set with only a presence state provider you must be sure to include a blank field
after the hint as in the example for extension 6005.

® Hints can be anywhere in the dialplan. Though, remember that dialplan referencing the extension and devices subscribing to it will need
use the extension number/name and context. The hints shown above would be 6001@internal, 6002@internal, etc, just like regular
extensions.

Querying Extension State

The Querying and Manipulating State section covers accessing and affecting the various types of state.

For a quick CLI example, once you have defined some hints, you can easily check from the CLI to verify they get loaded correctly.

*CLI > core show hints
-= Registered Asterisk Dial Plan Hnts =-

6003@ nt er nal : SIP/Charlie&AHDI /3 State: Unavail abl e Watchers 0
6002@ nt er nal : S| P/ Bob St at e: Unavai | abl e Watchers 0
6001@ nt er nal : SIP/Alice&SIP/Alice- State:Unavailable Watchers 0
6005@ nt er nal : ,CustonPresence:Elle State:Unavail able Watchers 0
6004@ nt er nal : SIP/Diane, CustonPres State: Unavail abl e Watchers 0

- 5 hints registered

In this example | was lazy, so they don't have real providers mapped otherwise you would see various states represented.

SIP Subscription to Asterisk hints

Once a hint is configured, Asterisk's SIP drivers can be configured to allow SIP User Agents to subscribe to the hints. A subscription will result in state
change notifications being sent to the subscriber.

Configuration for chan_sip is discussed in Configuring chan_sip for Presence Subscriptions

Configuration for res_pjsip is discussed in Configuring res_pjsip for Presence Subscriptions

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 134

http://www.ietf.org/rfc/rfc3856.txt
http://www.ietf.org/rfc/rfc3863.txt

Presence State
Overview

Asterisk 11 has been outfitted with support for presence states. An easy way to understand this is to compare presence state support to the device state
support Asterisk has always had. Like with device state support, Asterisk has a core API so that modules can register themselves as presence state
providers, alert others to changes in presence state, and query the presence state of others. The difference between the device and presence state
concepts is made clear by understanding the subject of state for each concept.

® Deuvice state reflects the current state of a physical device connected to Asterisk
® Presence state reflects the current state of the user of the device

For example, a device may currently be not i n use but the person is away. This can be a critical detail when determining the availability of the person.
While the architectures of presence state and device state support in Asterisk are similar, there are some key differences between the two.

® Asterisk cannot infer presence state changes the same way it can device state changes. For instance, when a SIP endpoint is on a call,
Asterisk can infer that the device is being used and report the device state as i n use. Asterisk cannot infer whether a user of such a
device does not wish to be disturbed or would rather chat, though. Thus, all presence state changes have to be manually enacted.

® Asterisk does not take presence into consideration when determining availability of a device. For instance, members of a queue whose
device state is busy will not be called; however, if that member's device is not i n use but his presence is away then Asterisk will still
attempt to call the queue member.

® Asterisk cannot aggregate multiple presence states into a single combined state. Multiple device states can be listed in an extension's
hint priority to have a combined state reported. Presence state support in Asterisk lacks this concept.

On this Page

Overview
Presence States
Subtype and Message
func_presencestate And The CustomPresence Provider
Configuring Presence Subscription with Hints
® Example Presence Notification
® Phone Support for Presence State via SIP presence notifications
® Digium Phones

Presence States

not _set : No presence state has been set for this entity.

unavai | abl e: This entity is present but currently not available for communications.

avai | abl e: This entity is available for communication.

away: This entity is not present and is unable to communicate.

xa: This entity is not present and is not expected to return for a while.

chat : This entity is available to communicate but would rather use instant messaging than speak.
dnd: This entity does not wish to be disturbed.

Subtype and Message

In addition to the basic presence states provided, presence also has the concept of a subtype and a message.

The subtype is a brief method of describing the nature of the state. For instance, a subtype for the away status might be "at home".

The message is a longer explanation of the current presence state. Using the same away example from before, the message may be "Sick with the flu. Out

until the 18th".

func_presencest at e And The Cust onPr esence Provider
The only provider of presence state in Asterisk 11 is the Cust onPr esence provider. This provider is supplied by the f unc_pr esencest at e. so module,

which grants access to the PRESENCE_STATE dialplan function. The documentation for PRESENCE_STATE can be found here. Cust onPr esence is
device-agnostic within the core and can be a handy way to set and query presence from dialplan, or APIs such as the AMI.

A simple use case for Cust onPr esence in dialplan is demonstrated below.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 135

https://wiki/display/AST/Asterisk+11+Function_PRESENCE_STATE
https://wiki/display/AST/Asterisk+11+Function_PRESENCE_STATE
https://wiki/display/AST/Asterisk+11+ManagerAction_PresenceState

[defaul t]

exten => 2000, 1, Answer ()

same => n, Set (CURRENT_PRESENCE=${ PRESENCE_STATE(Cust onPr esence: Bob, val ue) })

same => n, Cot ol f ($[${ CURRENT_PRESENCE} =avai | abl e] ?set _unavai | abl e: set _avai | abl e)
sane => n(set_avail abl e), Set (PRESENCE_STATE(Cust onPr esence: Bob) =avai | abl e, ,)
sane => n, Got o(fi ni shed)

sane => n(set_unavai | abl e), Set (PRESENCE_STATE(Cust onPr esence: Bob) =unavai | abl e, ,)
sane => n(finished), Pl ayback(queue-thankyou)

same => n, Hangup

exten => 2001, 1, Got ol f ($[${ PRESENCE_STATE(Cust onPr esence: Bob, val ue) } ! =avai | abl e] ?voi cemi |)
sane => n, Di al (S| P/ Bob)
same => n(voi cemail) Voi ceMai | (Bob@lef aul t)

With this dialplan, a user can dial 2000@lef aul t to toggle Bob's presence between avai | abl e and unavai | abl e. When a user attempts to call Bob
using 2001 @lef aul t , if Bob's presence is currently not avai | abl e then the call will go directly to voicemail.

1 One thing to keep in mind with the PRESENCE_STATE dialplan function is that, like with DEVI CE_STATE, state may be queried from any
“ presence provider, but PRESENCE_STATE is only capable of setting presence state for the Cust onPr esence presence state provider.

Configuring Presence Subscription with Hints

As is mentioned in the phone support section, at the time of writing this will only work with a Digium phone.

Like with device state, presence state is associated to a dialplan extension with a hint. Presence state hints come after device state in the hint extension
and are separated by a comma (,). As an example:

[defaul t]

exten => 2000, hi nt, SI P/ 2000, Cust onPr esence: 2000
exten => 2000, 1, Di al (Sl P/ 2000)

sane => n, Hangup()

Or alternatively, you could define the presence state provider without a device.

exten => 2000, hint,, Cust onPresence: 2000

The first example would allow for someone subscribing to the extension state of 2000@lef aul t to be notified of device state changes for device Sl P/ 20
00 as well as presence state changes for the presence provider Cust onPr esence: 2000.

The second example would allow for the subscriber to receive notification of state changes for only the presence provider CustomPresence:2000.
The Cust onPr esence presence state provider will be discussed further on this page.

Also like with device state, there is an Asterisk Manager Interface command for querying presence state. Documentation for the AMI Pr esenceSt at e com
mand can be found here.

Example Presence Notification

When a SIP device is subscribed to a hint you have configured in Asterisk and that hint references a presence state provider, then upon change of that
state Asterisk will generate a notification. That notification will take the form of a SIP NOTIFY including XML content. In the expanding panel below I've
included an example of a presence notification sent to a Digium phone. This particular presence notification happened when we changed presence state
for CustomPresence:6002 via the CLI command 'presencestate change'.

» Click here to see the NOTIFY example

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 136

https://wiki/display/AST/Asterisk+11+ManagerAction_PresenceState

nyserver*CLI > presencestate change CustonPresence: 6002 UNAVAI LABLE
Changi ng 6002 to UNAVAI LABLE

set _destination: Parsing <sip:6002@l0.24. 18. 138: 5060; ob> for address/port to send to
set_destination: set destination to 10.24.18. 138: 5060

Reliably Transmitting (no NAT) to 10.24.18.138:5060:

NOTI FY si p: 6002@L0. 24. 18. 138: 5060; ob SI P/ 2.0

Via: SIP/2.0/UDP 10. 24. 18. 124: 5060; br anch=z9hG4bK68008251; r por t

Max- Forwar ds: 70

From sip:6002@0. 24. 18. 124; t ag=as722c69ec

To: "Bob" <sip:6002@0. 24. 18. 124>; t ag=4DpRZf Rl | aKW9i QcaME2APXx85TgFOEN7
Contact: <sip:6002@0. 24. 18. 124: 5060>

Cal | -1 D JVoQf eZelcWIdPI 5aTVWkRpdgkj s8zmMVE

CSeq: 104 NOTI FY

User- Agent: Asterisk PBX SVN- branch-12-r413487

Subscription-State: active

Event: presence

Cont ent - Type: application/ pi df +xm

Cont ent - Lengt h: 602

<?xm version="1.0" encodi ng="1S0 8859-1"?>

<presence xnins="urn:ietf:params: xm :ns:pidf"

xm ns: pp="urn:ietf:paranms: xm : ns: pi df : per son"

xm ns: es="urn:ietf:parans: xm :ns: pidf:rpid:status:rpid-status”
xm ns: ep="urn:ietf:paranms: xm : ns: pi df : rpi d: r pi d- per son"
entity="sip:6002@L0. 24. 18. 124" >

<pp: per son><st at us>

</ st at us></ pp: per son>

<not e>Ready</ not e>

<tupl e i d="6002">

<contact priority="1">sip:6002@l0. 24. 18. 124</ cont act >

<st at us><basi c>open</ basi c></ st at us>

</tupl e>

<tupl e id="di gi um presence">

<status>

<di gi um presence type="unavail abl e" subtype=
</ status>

</ tupl e>

</ presence>

></ di gi um presence>

== Extension Changed 6002[frominternal] new state Idle for Notify User 6002

<--- SIP read from UDP: 10. 24. 18. 138: 5060 --->

SIP/2.0 200 K

Via: SIP/2.0/UDP 10.24. 18. 124: 5060; r por t =5060; r ecei ved=10. 24. 18. 124; br anch=z9hG4bK68008251
Cal | -1 D JVoQf eZelcWIdPI 5aTVWkRpdgkj s8zmVE

From <sip: 6002@L0. 24. 18. 124>; t ag=as722c69ec

To: "Bob" <sip:6002@0. 24. 18. 124>; t ag=4DpRZf Rl | aKW9i QcaME2APx85TgFOEN7

CSeq: 104 NOTI FY

Contact: "Bob" <sip:6002@l0. 24. 18. 138: 5060; ob>

Allow PRACK, INVITE, ACK, BYE, CANCEL, UPDATE, SUBSCRI BE, NOTIFY, REFER MESSAGE, OPTI ONS
Supported: replaces, 100rel, timer, norefersub

Content-Length: 0

Phone Support for Presence State via SIP presence notifications

At the time of writing, only Digium phones have built-in support for interpreting Asterisk's Presence State notifications (as opposed to SIP presence

notifications for extension/device state). The CustomPresence provider itself is device-agnostic and support for other devices could be added in. Or devices

themselves (soft-phone or hardphone) could be modified to interpret the XML send out in the Presence State notification.

Digium Phones

This Video provides more insight on how presence can be set and viewed on Digium phones.

When using Digium phones with the Digium Phone Module for Asterisk, you can set hints in Asterisk so that when one Digium phone's presence is
updated, other Digium phones can be notified of the presence change. The DPMA automatically creates provisions such that when a Digium Phone

updates its presence, Cust onPr esence: <l i ne nane> is updated, where <| i ne name> is the value set for the | i ne= option in a t ype=phone categor
y. Using the example dialplan from the Overview section, Digium phones that are subscribed to 2000@lef aul t will automatically be updated about line

2000's presence whenever line 2000's presence changes.

@ Digium phones support only the available, away, dnd, xa, and chat states. The unavailable and not_set states are not supported.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

137

http://www.youtube.com/watch?v=yMuGMGl4Ww0
http://downloads.digium.com/pub/telephony/res_digium_phone/

Querying and Manipulating State

Overview

This section will enumerate and briefly describe the ways in which you can query or manipulate the various Asterisk state resources. Device State, Extensi
on State and Presence State. Where mentioned, the various functions and commands will be linked to further available documentation.

Device State
The DEVICE_STATE function will return the Device State for a specified device state identifier and allow you to set Custom device states.

On the command line, the devstate command will allow you to list or modify Custom device states specifically.

devst ate change -- Change a custom device state
devstate |ist -- List currently known custom device states

On this Page

Overview

Device State

Extension State

Presence State

Asterisk Manager Interface actions

Extension State

The EXTENSION_STATE function will return the Extension State for any specified extension that has a defined hint.

The CLI command core show hints will show extension state for all defined hints, as well as display a truncated list of the mapped Device State or
Presence State identifiers.

nyserver*CLI > core show hints
-= Registered Asterisk Dial Plan Hnts =-
6002@rom i nternal : SI P/ 6002 St at e: Unavai | abl e Watchers 0
7777@rominternal : SI P/ 6003, CustonPrese State: Unavail abl e Watchers 0

- 2 hints registered

Presence State

Added in Asterisk 11, the PRESENCE_STATE function will return Presence State for any specified Presence State identifier, or set the Presence State for
specifically for a CustomPresence identifier.

The presencestate CLI command will list or modify any currently defined Presence State resources provided by the CustomPresence provider.

nyserver*CLI > core show hel p presencestate
presencestate change -- Change a custom presence state
presencestate |ist -- List currently know custom presence states

Asterisk Manager Interface actions

Any of the previously mentioned functions could be called via AMI with the Setvar and Getvar actions.

Then there are two more specific actions called ExtensionState and PresenceState. See the linked documentation for more info.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 138

https://wiki/display/AST/Asterisk+11+Function_DEVICE_STATE
https://wiki/display/AST/Asterisk+11+Function_EXTENSION_STATE
https://wiki/display/AST/Asterisk+11+Function_PRESENCE_STATE
https://wiki/display/AST/Asterisk+11+ManagerAction_Setvar
https://wiki/display/AST/Asterisk+11+ManagerAction_Getvar
https://wiki/display/AST/Asterisk+11+ManagerAction_ExtensionState
https://wiki/display/AST/Asterisk+11+ManagerAction_PresenceState

The Stasis Message Bus

Overview On This Page
® Overview
Asterisk 12 and Later ® Key Concept_s
This content only applies to Asterisk 12 and later. ® Publis
her

" . . ® Topic
In Asterisk 12, a new core component was added to Asterisk: the Stasis Message Bus. As the name Messa
suggests, Stasis is an internal publish/subscribe message bus that lets the real-time core of Asterisk ge
inform other modules or components — who subscribe for specific information topic — about events that e Subscr
occurred that they were interested in. iber
While the Stasis Message Bus is mostly of interest to those developing Asterisk, its existence is a useful ' Cache
piece of information in understanding how the Asterisk architecture works. ® Benefits

Key Concepts

The Stasis Message Bus has many concepts that work in concert together. Some of the most important are:

Publisher

A Publisher is some core component that wants to inform other components in Asterisk about some event that took place. More rarely, this can be a
dynamically loadable module; most publishers however are real-time components in the Asterisk core (such as the Channel Core or the Bridging
Framework).

Topic

A Topic is a high level, abstract concept that provides a way to group events together. For example, a topic may be all changes to a single channel, or
all changes to all bridges in Asterisk.

Message

A Message contains the information about the event that just occurred. A Publisher publishes a Message under a specific Topic to the Stasis Message
Bus.

Subscriber

A Subscriber subscribes to a particular topic, and chooses which messages it is interested in. When the Stasis Message Bus receives a Message from
a Publisher, it delivers the Message to each subscribed Subscriber.

Cache

Some Messages - particularly those that affect core communications primitives in Asterisk (such as channels or bridges) are stored in a special cache
in Stasis. Subscribers have the option to query the cache for the last known state of those primitives.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 139

Example: Channel Hangup

Alice | Hangup PJSIP/Alice-D0000000 Channel Core

Stasis Message: Channel
Stasis Message Bus

Hungup

Stasis Message Stasis Message

1. Alice hangs up, causing her channel - PJSIP/Alice-00000000
to be hung up.

2. The channel core creates a Stasis message for Alice's
channel being hung up, and publishes it to the Stasis ANMI
Message Bus.

CDR Engine

3. The Stasis Message Bus delivers the message to consumers
that subscribed for channel state. In this case, AMI and the Hangup AMI Event
CDR engine.

Dispatch CDR

4. AMI converts the received Stasis message into an AMI
Hangup Event, and sends that to its connected clients. AMI Client

5. The CDR engine updates its records that Alice has hung up,
and dispatches a CDR to a CSV record.

Benefits

Prior to Asterisk 12, various parts of the real-time core of Asterisk itself would have been responsible for updating AMI, the CDR Engine, and other
modules/components during key operations. By decoupling the consumers of state (such as AMI or the CDR Engine) from the producer (such as the

Channel Core), we have the following benefits:

® Improved Modularity: the logic for AMI, CDRs, and other consumers of state is no longer tightly coupled with the real-time components. This

simplifies both the producers and the consumers.

® |nsulation: because the APIs are now based on the Stasis Message Bus, changes to other parts of the Asterisk core do not immediately affect
the APIs. The APIs have the ability to transform, buffer, or even discard messages from the message bus, and can choose how to represent
Asterisk to their consumers. This provides increased stability for Asterisk users.

® Extensibility: because real-time state is now readily available over the message bus, adding additional consumers of state becomes much
easier. New interfaces and APIs can be added to Asterisk without modifying the Asterisk core.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 140

Configuration

This section contains many sub-sections on configuring every aspect of Asterisk. Other than what is
covered under Core Configuration, most features and functionality are provided by modules that you may
or may not have installed in your Asterisk system. Built-in configuration documentation for each module
(that has documentation) can be accessed through the Asterisk CLI. The CLI Syntax and Help
Commands section has more information on accessing the module configuration help.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

Topics

® Core
Configuration
® Channel
Drivers
Dialplan
Features
Applications
Functions
Reporting
Interfaces
Codec Opus
WebRTC

141

Core Configuration

The sub-pages here cover any possible configuration of Asterisk's core. That is, functionality which is not
separated out into modules.

If you are unfamiliar with the core and modules concepts, take a look at the Asterisk Architecture section.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

Topics

® Asterisk Main
Configuration
File

® Timing
Interfaces

® Asterisk Builtin
mini-HTTP
Server

® Logging
Configuration

® Asterisk CLI
Configuration

® Configuring the
Asterisk
Module Loader

® Configuring
Localized Tone
Indications

® Video
Telephony

® Video Console

® Named ACLs

142

Asterisk Main Configuration File

The asterisk.conf file

asterisk.conf is used to configure the locations of directories and files used by Asterisk, as well as options relevant to the core of Asterisk.

Link to the asterisk.conf.sample file in the Asterisk trunk subversion repo. The information below could become out of date, so always check the relevant
sample file in our version control system.

asterisk.conf has two primary contexts, shown below with some descriptions about their content.

A Note on Includes

Includes in this file will only work with absolute paths, as the configuration in this file is setting the relative paths that would be used in includes set in other
files.

Directories Context

[directories](!)

astetcdir => /etc/asterisk

astnoddir => /usr/lib/asterisk/nodul es
astvarlibdir => /var/lib/asterisk
astdbdir => /var/lib/asterisk

ast keydir => /var/lib/asterisk
astdatadir => /var/lib/asterisk
astagidir => /var/lib/asterisk/agi-bin
ast spool dir => /var/spool /asteri sk
astrundir => /var/run/asterisk
astlogdir => /var/log/asterisk
astsbindir => /usr/sbin

The directories listed above are explained in detail in the Directory and File Structure page.

Options Context

Some additional annotation for each configuration option is included inline.

1 TODO: Match this up with what is current in the sample, and update both.

[opti ons]

;Under "options" you can enter configuration options
;that you also can set with command |ine options

; Verbosity level for |ogging (-v) verbose = 0

; Debug: "No" or value (1-4)

debug = 3

; Background execution disabled (-f)
nof ork=yes | no

; Always background, even with -v or -d (-F)
al waysf ork=yes | no

; Consol e node (-c)
consol e= yes | no

; Execute with high priority (-p)
hi ghpriority = yes | no

; Initialize crypto at startup (-i)
initcrypto = yes | no

; Disable ANSI colors (-n)
nocol or = yes | no

; Dunmp core on failure (-g)
dunpcore = yes | no

; Run quietly (-q)
quiet = yes | no

; Force timestanping in CLI verbose output (-T)
timestanmp = yes | no

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 143

http://svnview.digium.com/svn/asterisk/trunk/configs/asterisk.conf.sample?view=markup

; User to run asterisk as (-U NOTE: will require changes to
; directory and device pernissions
runuser = asterisk

; Goup to run asterisk as (-0
rungroup = asterisk

; Enable internal timng support (-1)
internal _timing = yes | no

; Language Options
docunentation_|l anguage = en | es | ru

; These options have no conmmand |ine equivalent

; Cache record() files in another directory until conpletion
cache_record_files = yes | no
record_cache_dir = <dir>

; Build transcode paths via SLI NEAR
transcode_via_sln = yes | no

; send SLINEAR silence while channel is being recorded
transmit_silence_during_record = yes | no

; The maxi mum | oad average we accept calls for
maxl oad = 1.0

; The nmaxi mum nunber of concurrent calls you want to allow
naxcal |'s = 255

; Stop accepting calls when free nenory falls below this amunt specified in MB
m nnenfree = 256

; Al'l ow #exec entries in configuration files
execincludes = yes | no

; Don't over-informthe Asterisk sysadm he's a guru
dontwarn = yes | no

; Systemnane. Used to prefix CDR uniqueid and to fill \${SYSTEMNAVE}
systemane = <a_string>

; Shoul d | anguage code be | ast conponent of sound file nane or first?
; when off, sound files are searched as <path>/<lang>/<file>

; when on, sound files are search as <l ang>/ <path>/<file>

; (only affects relative paths for sound files)

| anguageprefix = yes | no

; Locking node for voicenail

; - lockfile: default, for normal use

; - flock: for where the | ockfile |ocking method doesn't work
; eh. on SMB/CIFS nounts

| ockmode = lockfile | flock

; Entity ID. This is in the formof a MAC address. It should be universally
; unique. It nust be unique between servers communicating with a protocol

; that uses this value. The only thing that uses this currently is DUNDi,

; but other things will use it in the future.

; entityid=00: 11: 22: 33: 44: 55

[files]

; Changing the following |ines nmay conpronise your security

; Asterisk.ctl is the pipe that is used to connect the rempte CLI

; (asterisk -r) to Asterisk. Changing these settings change the

; permissions and ownership of this file.

; The file is created when Asterisk starts, in the "astrundir" above.
;astctl perm ssions = 0660

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

144

;astctl owner = root
;astctlgroup = asterisk
;astctl = asterisk.ctl

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 145

Timing Interfaces

Asterisk Timing Interfaces

In the past, if internal timing were desired for an Asterisk system, then the only source acceptable was from DAHDI. Beginning with Asterisk 1.6.1, a new
timing APl was introduced which allows for various timing modules to be used.
Asterisk includes the following timing modules:

res_timng_pthread. so

res_tim ng_dahdi.so
res_timng_timerfd. so—as of Asterisk 1.6.2
res_tim ng_kqueue. so — as of Asterisk 11

res_tim ng_pt hread uses the POSIX pthreads library in order to provide timing. Since the code uses a commonly-implemented set of functions, r es_t
i m ng_pt hr ead is portable to many types of systems. In fact, this is the only timing source currently usable on a non-Linux system. Due to the fact that a
single userspace thread is used to provide timing for all users of the timer, res_t i m ng_pt hr ead is also the least efficient of the timing sources and has
been known to lose its effectiveness in a heavily-loaded environment.

res_ti m ng_dahdi uses timing mechanisms provided by DAHDI. This method of timing was previously the only means by which Asterisk could receive
timing. It has the benefit of being efficient, and if a system is already going to use DAHDI hardware, then it makes good sense to use this timing source. If,
however, there is no need for DAHDI other than as a timing source, this timing source may seem unattractive. For users who are upgrading from Asterisk
1.4 and are used to the zt dunmy timing interface, r es_t i m ng_dahdi provides the interface to DAHDI via the dahdi kernel module.

Historical Note
At the time of Asterisk 1.4's release, Zaptel (now DAHDI) was used to provide timing to Asterisk, either by utilizing telephony hardware installed
in the computer or via zt durmy (a kernel module) when no hardware was available.

When DAHDI was first released, the zt dummy kernel module was renamed to dahdi _dunmy. As of DAHDI Linux 2.3.0 the dahdi _dummy mod
ule has been removed and its functionality moved into the main dahdi kernel module. As long as the dahdi module is loaded, it will provide
timing to Asterisk either through installed telephony hardware or utilizing the kernel timing facilities when separate hardware is not available.

res_timng_tinerfd uses atiming mechanism provided directly by the Linux kernel. This timing interface is only available on Linux systems using a
kernel version at least 2.6.25 and a glibc version at least 2.8. This interface has the benefit of being very efficient, but at the time this is being written, it is a
relatively new feature on Linux, meaning that its availability is not widespread.

res_ti m ng_kqueue uses the Kqueue event notification system introduced with FreeBSD 4.1. It can be used on operating systems that support Kqueue,
such as OpenBSD and Mac OS X. Because Kqueue is not available on Linux, this module will not compile or be available there.

What Asterisk does with the Timing Interfaces

By default, Asterisk will build and load all of the timing interfaces. These timing interfaces are "ordered" based on a hard-coded priority number defined in
each of the modules. As of the time of this writing, the preferences for the modules is the following: res_ti mi ng_ti merfd. so,res_ti m ng_kqueue. s
o (where available), res_t i mi ng_dahdi . so,res_ti m ng_pt hr ead. so.

The only functionality that requires internal timing is IAX2 trunking. It may also be used when generating audio for playback, such as from a file. Even
though internal timing is not a requirement for most Asterisk functionality, it may be advantageous to use it since the alternative is to use timing based on
incoming frames of audio. If there are no incoming frames or if the incoming frames of audio are from an unreliable or jittery source, then the corresponding
outgoing audio will also be unreliable, or even worse, nonexistent. Using internal timing prevents such unreliability.

Customizations/Troubleshooting

Now that you know Asterisk's default preferences for timing modules, you may decide that you have a different preference. Maybe you're on a
timerfd-capable system but you would prefer to get your timing from DAHDI since you already are
using DAHDI to drive your hardware.

Alternatively, you may have been directed to this document due to an error you are currently experiencing with Asterisk. If you receive an error message
regarding timing not working correctly, then you can use one of the following suggestions to disable a faulty timing module.

1. Don't build the timing modules you know you will not use. You can disable the compilation of any of the timing modules using nenusel e
ct . The modules are listed in the "Resource Modules" section. Note that if you have already built Asterisk and have received an error
about a timing module not working properly, it is not sufficient to disable it from being built. You will need to remove the module from your
modules directory (by default, / usr/1i b/ ast eri sk/ modul es) to make sure that it does not get loaded again.

2. Build, but do not load the timing modules you know you will not use. You can edit modul es. conf using nol oad directives to disable the
loading of specific timing modules by default. Based on the note in the section above, you may realize that your Asterisk setup does not
require internal timing at all. If this is the case, you can safely nol oad all timing modules.

Some confusion has arisen regarding the fact that non-DAHDI timing interfaces are available now. One common misconception which has
arisen is that since timing can be provided elsewhere, DAHDI is no longer required for using the MeetMe application. Unfortunately, this is not
the case. In addition to providing timing, DAHDI also provides a conferencing engine which the MeetMe application requires.

Starting with Asterisk 1.6.2, however, there is a new application, ConfBridge, which is capable of conference bridging without the use of DAHDI's

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 146

http://www.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2

built-in mixing engine.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 147

Asterisk Builtin mini-HTTP Server

Overview

The core of Asterisk provides a basic HTTP/HTTPS server.

Certain Asterisk modules may make use of the HTTP service, such as the Asterisk Manager Interface over HTTP, the Asterisk Restful Interface or
WebSocket transports for modules that support that, like chan_sip or chan_pjsip.

Configuration
The configuration sample file is by default located at /etc/asterisk/http.conf

A very basic configuration of http.conf could be as follows:

[general]

enabl ed=yes

bi ndaddr=0. 0. 0.0
bi ndport =8088

That configuration would enable the HTTP server and have it bind to all available network interfaces on port 8088.

Configuration Options

See the sample file in your version of Asterisk for detail on the various configuration options, as this information is not yet automatically pushed to the wiki.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 148

Logging Configuration

Asterisk Log File Configuration

General purpose logging facilities in Asterisk can be configured in the logger.conf file. Within this file one is able to configure Asterisk to log messages to
files and/or a syslog and even to the Asterisk console. Note, the sections and descriptions listed below are meant to be informational and act as a guide (a
"how to") when configuring logging in Asterisk. Options with stated defaults don't have to be explicitly set as they will simply default to a designated value.

General Section:

[general]
; Customize the display of debug nessage tine stanps
; this exanple is the 1SO 8601 date format (yyyy-mmdd HH: MM SS)

; see strftime(3) Linux nanual for format specifiers. Note that there is
; also a fractional second paraneter which nay be used in this field. Use
; %q for tenths, %2q for hundredths, etc.

dateformat = % %. %8q ; 1SO 8601 date format with mlliseconds

; Wite callids to | og nmessages (defaults to yes)
use_callids = yes

; Append the hostname to the nane of the log files (defaults to no)
appendhost nane = no

; Log queue events to a file (defaults to yes)
queue_| og = yes

; Always | og queue events to a file, even when a realtinme backend is
; present (defaults to no).
queue_log_to_file = no

; Set the queue_log filenane (defaults to queue_| og)
queue_| og_nane = queue_| og

; Wien using realtine for the queue | og, use GMI for the tinestanp
; instead of localtime. (defaults to no)
queue_| og_real ti me_use_gnt = no

; Log rotation strategy (defaults to sequential):

; none: Do not performany log rotation at all. You should make
; very sure to set up some external |log rotate nechanism

H as the asterisk |ogs can get very large, very quickly.

; sequential: Renane archived |ogs in order, such that the newest
H has the hi ghest sequence nunber. Wen

; exec_after_rotate is set, ${filenane} will specify
; the new archived |ogfile.

; rotate: Rotate all the old files, such that the ol dest has the
H hi ghest sequence nunber (this is the expected behavior
; for Unix administrators). Wen exec_after_rotate is

; set, ${filenane} will specify the original root filenane.
; timestanp: Renanme the logfiles using a tinmestanp instead of a

H sequence nunber when "l ogger rotate" is executed.

; When exec_after _rotate is set, ${filename} wll

H specify the new archived logfile.

rotatestrategy = rotate

; Run a systemcommand after rotating the files. This is mainly
; useful for rotatestrategy=rotate. The exanple allows the |ast

; two archive files to remain unconpressed, but after that point,
; they are conpressed on disk.

exec_after_rotate=gzip -9 ${filenane}.2

Log Files Section:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 149

http://svnview.digium.com/svn/asterisk/trunk/configs/logger.conf.sample?view=markup

[l ogfiles]
; File names can either be relative to the standard Asterisk log directory (see "astlogdir" in
; asterisk.conf), or absolute paths that begin with '/'.

; Afew file names have been reserved and are considered special, thus cannot be used and wll
not be considered as a regular file nane. These include the follow ng:

H syslog - logs to syslog facility
; consol e - | ogs nessages to the Asterisk root console.

; For each file name given a corma separated |ist of |logging "level" types should be specified
; and include at |east one of the following (in no particular order):

; debug

; notice

; war ni ng

; error

; dt nf
; fax

; security

ver bose(<l evel >)

; The "verbose" value can take an optional integer argunment that indicates the naxi num | evel
; of verbosity to log at. Verbose nessages with higher levels than the indicated |evel will
; not be logged to the file. |If a verbose level is not given, verbose nessages are |ogged
; based upon the current level set for the root console.

; The special character "*" can also be specified and represents all |evels, even dynanic

; levels registered by nodules after the |ogger has been initialized. This nmeans that |oading
; and unl oadi ng nodul es that create and renove dynamic |ogging levels will result in these

; levels being included on filenanmes that have a | evel nane of "*", without any need to

; performa "logger reload" or similar operation.

; Note, there is no value in specifying both "*" and specific | evel types for a file nane.
; The "*" level neans ALL levels. The only exception is if you need to specify a specific
; verbose level. e.g, "verbose(3),*".

; It is highly recomrended that you DO NOT turn on debug node when running a production system

; unless you are in the process of debugging a specific issue. Debug node outputs a LOT of

; extra nessages and information that can and do fill up log files quickly. Mst of these

; messages are hard to interpret without an understanding of the underlying code. Do NOT report

; debug nessages as code issues, unless you have a specific issue that you are attenpting to debug.
; They are nessages for just that -- debugging -- and do not rise to the |level of sonething that

; merit your attention as an Asterisk administrator.

; output notices, warnings and errors to the consol e
consol e => noti ce, warni ng, error

output security nmessages to the file naned "security"
security => security

; output notices, warnings and errors to the the file naned "nessages"
nessages => notice, warni ng, error

out put notices, warnings, errors, verbose, dtnf, and fax to file name "full"
full => notice,warning,error, verbose, dtnf, f ax

; output notices, warning, and errors to the syslog facility
sysl og. | ocal 0 => noti ce, warni ng, error

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 150

Asterisk CLI Configuration
With the exception of the functionality provided by the res_clialiases.so module, Asterisk's Command Line Interface is provided by the core. There are a

few configuration files relevant to the CLI that you'll see in a default Asterisk installation. All of these should be found in the typical /etc/asterisk/ directory in
a default install. The configuration of these files is trivial and examples exist in the sample files included in the source and tarballs.

cli.conf

This file allows a listing of CLI commands to be automatically executed upon startup of Asterisk.

cli_permissions.conf

Allows you to configure specific restrictions or allowances on commands for users connecting to an Asterisk console. Read through the sample file carefully
before making use of it, as you could create security issues.

cli_aliases.conf

This file allows configuration of aliases for existing commands. For example, the 'help' command is really an alias to 'core show help'. This functionality is
provided by the res_clialiases.so module.

CLI related commands

There are a few commands relevant to the CLI configuration itself.

cli check permissions - allows you to try running a command through the permissions of a specified user
cli reload permissions - reloads the cli_permissions.conf file

cli show permissions - shows configured CLI permissions

cli show aliases - shows configured CLI command aliases

Changing the CLI Prompt

The CLI prompt is set with the ASTERISK_PROMPT UNIX environment variable that you set from the Unix shell before starting Asterisk
You may include the following variables, that will be replaced by the current value by Asterisk:

%d - Date (year-month-date)

%s - Asterisk system name (from asterisk.conf)
%h - Full hostname

%H - Short hostname

%t - Time

%u - Username
%g - Groupname
%% - Percent sign

%f# - '#' if Asterisk is run in console mode, " if running as remote console
%Cn[;n] - Change terminal foreground (and optional background) color to specified A full list of colors may be found in
include/asterisk/term.h

On systems which implement getloadavg(3), you may also use:

® %Il1 - Load average over past minute
® %I2 - Load average over past 5 minutes
® %I3 - Load average over past 15 minutes

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 151

Configuring the Asterisk Module Loader

Overview

As you may have learned from the Asterisk Architecture section, the majority of Asterisk's features and functionality are separated outside of the core into

various modules. Each module has distinct functionality, but sometimes relies on another module or modules.

Asterisk provides capability to automatically and manually load modules. Module load order can be configured before load-time, or modules may be loaded
and unloaded during run-time.

Configuration

The configuration file for Asterisk's module loader is modules.conf. It is read from the typical Asterisk configuration directory. You can also view the
sample of modules.conf file in your source directory at configs/modules.conf.sample or on SVN at this link.

The configuration consist of one large section called "modules” with possible directives configured within.

There are several directives that can be used.

® autoload - When enabled, Asterisk will automatically load any modules found in the Asterisk modules directory.
preload - Used to specify individual modules to load before the Asterisk core has been initialized. Often used for realtime modules so that

config files can be pushed to a backend before the dependent modules are loaded.

require - Set a required module. If a required module does not load, then Asterisk exits with status code 2.
preload-require - A combination of preload and require.

noload - Do not load the specified module.

load - Load the specified module. Typically used when autoload is set to 'no'.

Let's show a few arbitrary examples below.

[nodul es]
;autol oad = yes

;preload = res_odbc. so
;preload = res_config_odbc. so
;prel oad-require = res_odbc. so
;require = res_pjsip.so

;nol oad = pbx_gt kconsol e. so

;1 oad = res_nusi conhol d. so

CLI Commands

Asterisk provides a few commands for managing modules at run-time. Be sure to check the current usage using the CLI help with "core show help

<command>".

® module show

Usage:

nodul e show [|ike keyword]
Shows Asterisk nodules currently in use, and usage statistics.

® module load

Usage:

nmodul e | oad <npdul e nane>
Loads the specified nodule into Asterisk.

® module unload

Usage:

nodul e unload [-f|-h] <nodule_1> [<npdule_2> ...]

Unl oads the specified nodule from Asterisk. The -f
option causes the nodule to be unloaded even if it is
in use (may cause a crash) and the -h nodul e causes the
nodul e to be unl oaded even if the nodule says it cannot,
whi ch al npst always wi |l cause a crash.

® module reload

Usage:

nodul e rel oad [nodule ...]
Rel oads configuration files for all |isted nodul es which support
rel oading, or for all supported nodules if none are |isted.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

152

http://svnview.digium.com/svn/asterisk/trunk/configs/samples/modules.conf.sample?view=markup

Configuring Localized Tone Indications

Overview

In certain cases Asterisk will generate tones to be used in call signaling. It may be during the use of a specific application, or with certain channel drivers.

The tones used are configurable and may be defined by location.

Note that the tones configured here are only used when Asterisk is directly generating the tones.

Configuration

The configuration file for location specific tone indications is indications.conf. It is read from the typical Asterisk configuration directory. You can also view

the sample of indications.conf file in your source directory at configs/modules.conf.sample or on SVN at this link.

The configuration itself consists of a 'general' section and then one or more country specific sections. (e.g. '[au]' for Australia)

Within the general section, only the country option can be set. This option sets the default location tone set to be used.

[general]
count ry=us

As an example, the above set the default country to the tone set for the USA.

Within any location specific configuration, several tone types may be configured.

® description = string ; The full name of your country, in English.

® ringcadence = num[,num]* ; List of durations the physical bell rings.

® dial =tonelist ; Set of tones to be played when one picks up the hook.

® busy =tonelist ; Set of tones played when the receiving end is busy.

® congestion =tonelist ; Set of tones played when there is some congestion (on the network?)

® callwaiting = tonelist ; Set of tones played when there is a call waiting in the background.

® dialrecall =tonelist ; Not well defined; many phone systems play a recall dial tone after hook flash

® record =tonelist ; Set of tones played when call recording is in progress.

® info =tonelist ; Set of tones played with special information messages (e.g., "number is out of service")

® 'name' =tonelist ; Every other variable will be available as a shortcut for the "PlayList" command but will not be used automatically by Asterisk.

Explanation of the 'tonelist' usage:

The tonelist itself is defined by a conma-separated sequence of el enents.
Each el ement consist of a frequency (f) with an optional duration (in ms)
attached to it (f/duration). The frequency conponent may be a mixture of two
frequencies (f1+f2) or a frequency nodul ated by another frequency (f1*f2)
The inplicit nodul ation depth is fixed at 90% though.

If the list element starts with a !, that element is NOT repeated,

; therefore, only if all elenents start with !, the tonelist is tinme-linmted,
; all others will repeat indefinitely

conci sely
element = [!]freq[+| *freq2][/duration]
tonelist = elenent[,element]*

Example of a location specific tone configuration:

[br]

description = Brazil

ri ngcadence = 1000, 4000
dial = 425

busy = 425/ 250, 0/ 250

ring = 425/1000, 0/ 4000

congestion = 425/ 250, 0/ 250, 425/ 750, 0/ 250

callwaiting = 425/50, 0/ 1000

; Dialrecall not used in Brazil standard (using UK standard)
di al recal | = 350+440

; Record tone is not used in Brazil, use busy tone

record = 425/ 250, 0/ 250

; Info not used in Brazil standard (using UK standard)

info = 950/ 330, 1400/ 330, 1800/ 330

stutter = 350+440

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

153

http://svnview.digium.com/svn/asterisk/trunk/configs/samples/indications.conf.sample?view=markup

Video Telephony

Asterisk and Video telephony

Asterisk supports video telephony in the core infrastructure. Internally, it's one audio stream and one video stream in the same call. Some channel drivers
and applications has video support, but not all.

Codecs and formats

Asterisk supports the following video codecs and file formats. There's no video transcoding so you have to make sure that both ends support the same
video format.

Codec Format Notes
H.263 read/write
H.264 read/write

H.261 - Passthrough only

Note that the file produced by Asterisk video format drivers is in no generic video format. Gstreamer has support for producing these files and converting
from various video files to Asterisk video+audio files.

Note that H.264 is not enabled by default. You need to add that in the channel configuration file.

Channel Driver Support

Channel Driver Module Notes

SIP chan_sip. so The SIP channel driver (chan_sip.so) has support for video
1AX2 chan_i ax2.so Supports video calls (over trunks too)

Local chan_l ocal . so Forwards video calls as a proxy channel

Agent chan_agent . so Forwards video calls as a proxy channel

0ss chan_oss. so Has support for video display/decoding, see video_console.txt
Applications

This is not yet a complete list. These dialplan applications are known to handle video:

Voicemail - Video voicemail storage (does not attach video to e-mail)
Record - Records audio and video files (give audio format as argument)
Playback - Plays a video while being instructed to play audio

[]
[]
[]
® Echo - Echos audio and video back to the user

There is a development group working on enhancing video support for Asterisk.

If you want to participate, join the asterisk-video mailing list on http://lists.digium.com

Updates to this file are more than welcome!

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 154

http://lists.digium.com

Video Console

Video Console Support in Asterisk

Some console drivers (at the moment chan_oss.so) can be built with support for sending and receiving video. In order to have this working you need to
perform the following steps:

Enable building the video_console support

The simplest way to do it is add this one line to channels/Makefile:

chan_oss. so: _ASTCFLAGS+=- DHAVE VI DEO CONSCLE

Install prerequisite packages
The video_console support relies on the presence of SDL, SDL_image and ffmpeg libraries, and of course on the availability of X11
On Linux, these are supplied by

libncurses-dev
libsdl1.2-dev
libsdl-imagel.2-dev
libavcodec-dev
libswcale-dev

On FreeBSD, you need the following ports:

® multimedia/ffmpeg (2007.10.04)
® devel/sdl12 graphics/sdl_image

Build and install asterisk with all the above
Make sure you do a 'make clean' and run configure again after you have installed the required packages, to make sure that the required pieces are found.

Check that chan_oss.so is generated and correctly installed.

Update configuration files
Video support requires explicit configuration as described below:

oss.conf
You need to set various parameters for video console, the easiest way is to uncomment the following line in oss.conf by removing the leading ';'

;[general] (+, my_vi deo, ski n2)

You also need to manually copy the two files

® images/kpad2.jpg
® images/font.png

into the places specified in oss.conf, which in the sample are set to

keypad = /tnp/ kpad2.|pg
keypad_font = /tnp/font.png

other configuration parameters are described in oss.conf.sample

sip.conf

To actually run a call using SIP (the same probably applies to iax.conf) you need to enable video support as following

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 155

[general] (+)

vi deosuppor t =yes

al | on=h263 ; this or other video formats
al | ow=h263p : this or other video fornats

You can add other video formats e.g. h261, h264, mpeg if they are supported by your version of libavcodec.

Run the Program

Run asterisk in console mode e.g. asterisk -vdc

If video console support has been successfully compiled in, then you will see the "console startgui" command available on the CLI interface. Run the
command, and you should see a window like this http://info.iet.unipi.it/~luigi/asterisk_video_console.jpg

To exit from this window, in the console run "console stopgui”.

If you want to start a video call, you need to configure your dialplan so that you can reach (or be reachable) by a peer who can support video. Once done, a
video call is the same as an ordinary call:

"console dial ...", "console answer", "console hangup" all work the same.

To use the GUI, and also configure video sources, see the next section.

Video Sources

Video sources are declared with the "videodevice=..." lines in oss.conf where the ... is the name of a device (e.g. /dev/videoO ...) or a string starting with
X11 which identifies one instance of an X11 grabber.

You can have up to 9 sources, displayed in thumbnails in the gui, and select which one to transmit, possibly using Picture-in-Picture.

For webcams, the only control you have is the image size and frame rate (which at the moment is the same for all video sources). X11 grabbers capture a
region of the X11 screen (it can contain anything, even a live video) and use it as the source. The position of the grab region can be configured using the
GUI below independently for each video source.

The actual video sent to the remote side is the device selected as "primary” (with the mouse, see below), possibly with a small 'Picture-in-Picture’ of the
"secondary" device (all selectable with the mouse).

GUI Commands and Video Sources

(most of the text below is taken from channels/console_gui.c)

The GUI is made of 4 areas: remote video on the left, local video on the right, keypad with all controls and text windows in the center, and source device
thumbnails on the top. The top row is not displayed if no devices are specified in the config file.

| tnl| | tn2] | tn3 | | tn4]| | tn5| | tn.6] | tn.7 |

renote video I ocal video

keypad | |
[—

The central section is built using an image (jpg, png, maybe gif too) for the skin and other GUI elements. Comments embedded in the image indicate to
what function each area is mapped to.

Another image (png with transparency) is used for the font.
Mouse and keyboard events are detected on the whole surface, and handled differently according to their location:

Center/right click on the local/remote window are used to resize the corresponding window
Clicks on the thumbnail start/stop sources and select them as primary or secondary video sources
Drag on the local video window are used to move the captured area (in the case of X11 grabber) or the picture-in-picture position

L]
°
°
® Keystrokes on the keypad are mapped to the corresponding key; keystrokes are used as keypad functions, or as text input

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 156

http://info.iet.unipi.it/~luigi/asterisk_video_console.jpg

if we are in text-input mode.
® Drag on some keypad areas (sliders etc.) are mapped to the corresponding functions (mute/unmute audio and video,
enable/disable Picture-in-Picture, freeze the incoming video, dial numbers, pick up or hang up a call, ...)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 157

Named ACLs

Overview

On This Page

Named ACLs introduce a new way to define Access Control Lists (ACLSs)
in Asterisk. Unlike traditional ACLs defined in specific module
configuration files, Named ACLs can be shared across multiple modules.
Named ACLs can also be accessed via the Asterisk Realtime
Architecture (ARA), allowing for run-time updates of ACL information that
can be retrieved by multiple consumers of ACL information.

Configuration

® QOverview
® Configuration
® Static Configuration
® Configuring for IPv6
® ARA Configuration
® Named ACL Consumers
® Configuration
® ACL Rule Application
® Module Reloads

Static Configuration

Named ACLs can be defined statically in acl.conf. Each context in acl.co
nf defines a specific Named ACL, where the name of the context is the
name of the ACL. The syntax for each context follows the permit/deny
nomenclature used in traditional ACLs defined in a consumer module's
configuration file.

Option Value Description

deny IP address [/Mask] An IP address to
deny, with an
optional subnet mask
to apply

permit IP address [/Mask] An IP address to

allow, with an
optional subnet mask
to apply

Examples

; within acl.conf

[name_of _acl 1]
deny=0.0.0.0/0.0.0.0
perm t=127.0.0.1

Multiple rules can be specified in an ACL as well by chaining deny/permit specifiers.

[name_of _acl 2]

deny=10. 24. 0. 0/ 255. 255. 0.0
deny=10. 25. 0. 0/ 255. 255. 0. 0

permi t =10. 24. 11. 0/ 255. 255. 255. 0
perm t=10. 24. 12. 0/ 255. 255. 255. 0

Named ACLs support common modifiers like templates and additions within configuration as well.

[tenpl ate_deny_al I](!)
deny=0.0.0.0/0.0.0.0

[deny_al | _whitelist_these](tenplate_deny_all)
perm t=10. 24. 20. 1
per mi t =10. 24. 20. 2
perm t=10. 24. 20. 3

Configuring for IPv6

Nanmed ACLs can use ipv6 addresses just |ike nornmal ACLs.

[i pv6_exanpl e_1]
deny = :
permt = ::1/128

[i pv6_exanpl e_2]
permt = fe80::21d: bad: fad: 2323

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

158

ARA Configuration

The ARA supports Named ACLs using the 'acls' keyword in extconfig.conf.

Example Configuration

;in extconfig. conf
acls => odbc, asteri sk, acltable

Schema

Column Name Type Description

name varchar(80) Name of the ACL

rule_order integer Order to apply the ACL rule. Rules are applied in ascending order. Rule numbers do not have to be sequential
sense varchar(6) = Either 'permit' or 'deny’

rule varchar(95) = The IP address/Mask pair to apply

Examples

Table Creation Script (PostgreSQL)

CREATE TABLE acl tabl e
(
"name" character varying(80) NOT NULL,
rul e_order integer NOT NULL,
sense character varying(6) NOT NULL,
“rule" character varying(95) NOT NULL,
CONSTRAI NT acl rul ekey PRI MARY KEY (nane, rule_order, rule, sense)
)
WTH (
O DS=FALSE
)
ALTER TABLE acl tabl e OANER TO asteri sk;
GRANT ALL ON TABLE acltable TO asteri sk;
)

Table Creation Script (SQLite3)

BEG N TRANSACTI ON;
CREATE TABLE acltable (rule TEXT, sense TEXT, rule_order NUMERI C, nane TEXT);
COWM T;

These scripts were generated by pgadmin 11l and SQLite Database Browser. They might not necessarily apply for your own setup.

Since ACLs are obtained by consumer modules when they are loaded, an ACL updated in an ARA backend will not be propagated
automatically to consumers using static configuration. Consumer modules also using ARA for their configuration (such as SIP/IAX2 peers)
will similarly be up to date if and only if they have built the peer in question since the changes to the realtime ACL have taken place.

Named ACL Consumers

Named ACLs are supported by the following Asterisk components:

Manager (IPv4 and IPv6)
chan_sip (IPv4 and IPv6)
chan_pjsip (IPv4 and IPv6)
chan_iax2 (IPv4 and IPv6)

Configuration

A consumer of Named ACLs can be configured to use a named ACL using the acl option in their ACL access rules. This can be in addition to the ACL
rules traditionally defined in those configuration files.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 159

Example 1: referencing a Named ACL

; Within sip.conf

[peer1]

;stuff

; deny=0.0.0.0/0.0.0.0

;permt=127.0.0.1

acl =name_of _acl _1 ; an ACL included fromacl.conf that matches peer1l's conmented out permnits/denies

Multiple named ACLs can be referenced as well by specifying a comma delineated list of Named ACLs to apply.

Example 2: multiple Named ACL references

; Within sip.conf

[peer1]
;stuff
acl =nanmed_acl _1, naned_acl _2

Similarly, a SIP or IAX2 peer defined in ARA can include an 'acl' column and list the Named ACLSs to apply in that column.

NOTE

1

“ Named ACLs can also be defined using multiple instances of the acl keyword. This is discouraged, however, as the order in which ACLs are
applied can be less obvious then the comma delineated list format.

acl =named_acl _1
acl =naned_acl _2

ACL Rule Application

Each module consumer of ACL information maintains, for each object that uses the information, a list of the defined ACL rule sets that apply to that
object. When an address is evaluated for the particular object, the address is evaluated against each rule. For an address to pass the ACL rules, it
must pass each ACL rule set that was defined for that object. Failure of any ACL rule set will result in a rejection of the address.

Module Reloads

ACL information is static once a consumer module references that information. Hence, changes in ACL information in an ARA backend will not
automatically update consumers of that information. In order for consumers to receive updated ACL information, the Named ACL component must be
reloaded.

The Named ACL component supports module reloads, in the same way as other Asterisk components. When the Named ACL component is reloaded,
it will issue a request to all consumers of Named ACLs. Those consumer modules will also be automatically reloaded.

WARNING
This implies that reloading the Named ACL component will force a reload of manager, chan_sip, etc. Only reload the Named ACL
component if you want all consumers of that information to be reloaded as well.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 160

Channel Drivers

All about Asterisk and its Channel Drivers

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

Topics

SIP
Inter-Asterisk
eXchange
protocol,
version 2
(IAX2)
DAHDI

Local Channel
Motif

mISDN
Mobile
Channel
Unistim
Skinny

RTP
Packetization
IP Quality of
Service
AudioSocket

161

SIP

@ Under Construction

1 Section to hold information on configuring the SIP channel drivers, chan_sip and chan_pjsip

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 162

Configuring chan_sip

(D Under Construction - This is a stub

Currently the documentation resides in the sip.conf.sample file included with the source. We are in the process of updating the wiki!

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 163

chan_sip State and Presence Options

Device State

There are a few configuration options for chan_sip that affect Device State behavior.

callcounter

The callcounter option in sip.conf must be enabled for SIP devices (e.g. SIP/Alice) to provide advanced device state. Without it you may see some state,
such as unavailable or idle, but not much more.

The option can be set in the general context, or on a per-peer basis.

Default: no

[general]
cal | count er =yes

busylevel

The busylevel option only works if call counters are enabled via the above option. If call counters are enabled, then busylevel allows you to set a threshold
for when to consider this device busy. If busylevel is set to 2, then only at 2 or more calls will the device state report BUSY. The busylevel option can only

be set for peers.

Default: 0
[6001]
type=friend
busyl evel =2

notifyhold
The notifyhold option, when enabled, adds the ONHOLD device state to the range of possible device states that chan_sip will use.
This option can only be set in the general section.

Default: yes

[general]
not i f yhol d=no

Extension State, Hints, Subscriptions

Extension State and subscriptions tend to go hand in hand. That is, if you are using Extension State, you probably have SIP user agents subscribing to
those extensions/hints. These options all affect that behavior.

allowsubscribe

The allowsubscribe option enables or disables support for any kind of subscriptions. You can set allowsubscribe per-peer or in the general section.

Default: yes

[6001]
type=friend
al | owsubscri be=no

subscribecontext

subscribecontext sets a specific context to be used for subscriptions. That means, if SIP user agent subscribes to this peer, Asterisk will search for an
associated hint mapping in the context specified.

This option can be set per-peer or in the general section.

Default: null (by default Asterisk will use the context specified with the "context" option)

[6001]
type=friend

cont ext =i nt er nal

subscri becont ext =nyhints

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 164

notifyringing

notifyringing enables or disables notifications for the RINGING state when an extension is already INUSE. Only affects subscriptions using the dialog-inf
o event package. Option can be configured in the general section only. It cannot be set per-peer.

Default: yes

[general]
noti fyringi ng=no

notifycid

notifycid some nuance and may only be relevant to SNOM phones or others that support dialog-info+xml notifications. Below are the notes from the
sample sip.conf,

Default: no

Control whether caller IDinformation is sent along with

di al og-info+xm notifications (supported by snom phones).

; Note that this feature will only work properly when the

incomng call is using the same extension and context that

is being used as the hint for the called extension. This neans
that it won't work when using subscribecontext for your sip

user or peer (if subscribecontext is different than context).
This is also limted to a single caller, neaning that if an
extension is ringing because multiple calls are inconing,

; only one will be used as the source of caller ID. Specify

; 'ignore-context' to ignore the called context when | ooking

for the caller's channel. The default value is 'no." Setting
notifycid to 'ignore-context' also causes call-pickups attenpted
via SNOM s NOTI FY nechanismto set the context for the call pickup
to Pl CKUPVARK.

;notifycid = yes

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 165

Configuring chan_sip for IPv6

Configuring chan_sip for IPv6

Mostly you can use IPv6 addresses where you would have otherwise used IPv4 addresses within sip.conf. The sip.conf.sample provides several examples
of how to use the various options with IPv6 addresses. We'll provide a few examples here as well.

Examples
Binding to a specific IPv6 interface
[general]
bi ndaddr=2001: db8: : 1
Binding to all available IPv6 interfaces (wildcard)
[general]
bi ndaddr =::
You can specify a port number by wrapping the address in square brackets and using a colon delimiter.

[general]
bi ndaddr=[::]:5062

@ You can choose independently for UDP, TCP, and TLS, by specifying different values for "udpbindaddr”, "tcpbindaddr”, and "tlsbindaddr".

Note that using bindaddr=:: will show only a single IPv6 socket in netstat. IPv4 is supported at the same time using IPv4-mapped IPv6
addresses.)

Other Options

Other options such as "outboundproxy" or "permit" can use IPv6 addresses the same as in the above examples.

perm t=2001: db8: : /32

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 166

Configuring chan_sip for Presence Subscriptions

Overview
This page is a rough guide to get you configuring chan_sip and Asterisk to accept subscriptions for presence (in this case, Extension State) and notify the

subscribers of state changes.

Requirements

You should understand the basics of
® Device State and Extension State and Hints
® Configuring SIP peers in sip.conf

General Process

Overview
It is best to consider this configuration in the context of a very simplified use case. It should illustrate the overall concept, as well as the ability for Extension
State to aggregate Device States.

The case is that our administrator wants the user device of SIP/Alice to display the presence of Bob. Bob has two devices, SIP/Bob-mobile and
SIP/Bob-desk. He could be on either device at any one time, so we want to map them both to the same Hint. That way, when Alice subscribes to the Hint,
she'll get the aggregated Extension State of Bob's devices. That means if either of Bobs phones are busy, then the extension state will be busy. Then Alice
knows that Bob is busy without having to have a separate light for each of Bob's phones.

Figure 1 should illustrate the overall relationships of the different elements involved.

Then following down the page you can find detail on configuring the three major elements, SIP configuration options, hints in dialplan, and configuring a
phone to subscribe.

Configure SIP options

Since this is not a guide on configuring SIP peers, we'll show a very simple sip.conf with only enough configuration to point out where you might set
specific chan_sip State and Presence Options .

[general]
cal | counter=yes

[Alice

type=friend
subscri becont ext =def aul t
al | owsubscri be=yes

[Bob- nobi | e]
type=friend
busyl evel =1

[Bob- desk]
type=friend
busyl evel =1

We are setting one option in the general section, and then a few options across the three SIP peers involved.

callcounter and busylevel are the most essential options. callcounter needs to be enabled for chan_sip to provide accurate device. busylevel=1 says we
want the device states of those peers to show busy if they have at least one call in progress. The subscribecontext option tells Asterisk which dialplan
context to look for the hint. allowsubscribe says that we will allow subscriptions for that peer. It is really set to yes by default, but we are defining it here to
demonstrate that you could allow and disallow subscriptions on a per-peer basis if you wanted.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 167

Figure 1

Asterisk
CORE
Dialplan Hint
6001 @&@default -= SIP/Bob-mobile, SIP/Bob-desk
Subscriber subscribes to a Hint aggregates Device
hint for Extension State State from one or more
devices
" chan_sip module {
— Device
Subscription
- SIP/Bob-desk
SIP/Alice -> 6001 @default :
Device chan_sip determines
- state of devices and
SIP/Bob-mobil
mobre provides Device State
L

SIP communication from
various chan_sip peers

SIP/Alice subscribes to
6001 @default

This diagram is purposefully simplified to only show the relationships between the
elements involved in this configuration.

Configure Hints

Hints are configured in Asterisk dialplan (extensions.conf). This is where you map Device State identifiers or Presence State identifiers to a hint, which will
then be subscribed to by one or more SIP User Agents.

For our example we need to define a hint mapping 6001 to Bob's two devices.

[defaul t]
exten = 6001, hint, Sl P/ Bob- nobi | e&SlI P/ Bob- desk

Defining the hint is pretty straightforward and follows the syntax discussed in the Extension State and Hints section.

Notice that we put it in the context we set in subscribecontext in sip.conf earlier. Otherwise we would need to make sure it is in the same context that the
SIP peer uses (defined with "context").

If you have restarted Asterisk to load the hints, then you can check to make sure they are configured with “core show hints"

*CLI > core show hints
-= Registered Asterisk Dial Plan Hnts =-
6001@lef aul t : S| P/ Bob-nobi | e&SI P/ B St at e: Unavai | abl e Watchers 0

You'll see the state changes to Idle or something else if you have your sip.conf configured properly and the two SIP devices are at least available.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 168

Configure Subscriber

You should configure your SIP User Agent (soft-phone, hard-phone, another phone application like Asterisk) to subscribe to the hint. In this case that is

SIP/Alice and we want her phone to subscribe to 6001.

The process will be different for every phone, and keep in mind that some phones may not support Asterisk's state notification. With most phones it'll be a

matter of adding a "contact" to a contact list, buddy list, or address book and then making sure that SIP presence is enabled in the options.

If you want to submit a guide for a specific phone, feel free to comment on this page or submit it to the Asterisk issue tracker.

Operation
Typically as soon as you add the contact or subscription on the phone then it will attempt to SUBSCRIBE to Asterisk.
If you haven't done so, restart Asterisk and then restart the SIP User Agent client doing the subscribing.

The flow of SIP messaging can differ based on configuration, but typically looks like this for a peer that requires authentication:

SIP/Alice Asterisk

SUBSCRI BE

401 Unaut hori zed
SUBSCRI BE(W Auth) --->

<--- 200 &K

<--- NOTI FY
200 &K —-e>

In the expanding frame below is a SIP trace of a successful subscription for reference. You could see this on your own system by running "sip set debug

on" and then watching for the subscription. You might have to restart your phone again or re-add a contact to see it.
= Click to see the subscription trace...

<--- SIP read from UDP: 10. 24. 17. 254: 37509 --->

SUBSCRI BE si p: 6001@L0. 24. 18. 124; transport=UDP SI P/ 2.0

Via: SIP/2.0/UDP 10. 24. 17. 254: 37509; br anch=z9hG4bK- d8754z- e5ecf delf 337b690- 1- - - d8754z-
Max- Forwar ds: 70

Contact: <sip:Alice@O0.24.17.254:37509; t ranspor t =UDP>

To: <sip:6001@L0. 24. 18. 124; transpor t =UDP>

From <sip:Aice@Q0.24.18.124;transport=UDP>; t ag=f 519632

Cal | -1 D Zj E2ZDAWYThi OTA2Mz Yx ONBWNTEWM c¢1ZG x NTk 3NDU.

CSeq: 1 SUBSCRI BE

Expires: 1800

Accept: application/ pidf +xni

Al'low. |INVITE, ACK, CANCEL, BYE, NOTIFY, REFER, MESSAGE, OPTIONS, |NFO SUBSCRI BE
Supported: replaces, norefersub, extended-refer, tiner, X-cisco-serviceuri
User-Agent: Z 3.2.21357 r21103

Event: presence

Al'l ow- Events: presence, kpni

Content-Length: 0

--- (16 headers 0 lines) ---

Sending to 10.24.17.254: 37509 (no NAT)

Creating new subscription

Sending to 10.24.17.254: 37509 (no NAT)

list_route: route/path hop: <sip:Aice@UO0.24.17.254:37509;transport=UDP>
Found peer 'Alice' for 'Alice' from10.24.17.254:37509

<--- Transmitting (no NAT) to 10.24.17.254:37509 --->

SI P/ 2.0 401 Unaut hori zed

Via: SIP/2.0/UDP 10.24. 17. 254: 37509, br anch=z9hG4bK- d8754z- e5ecf delf 337b690- 1- - - d8754z- ; r ecei ved=10. 24. 17. 254
From <sip:Alice@0.24.18. 124;transport=UDP>; t ag=f 519632

To: <sip:6001@l0.24. 18. 124; transpor t =UDP>; t ag=as46a6e039

Cal | -1 D Zj E2ZDAWYThi OTA2Mz Yx ONBWNTEWM c¢1ZG x NTk 3NDU.

CSeq: 1 SUBSCRI BE

Server: Asterisk PBX SVN-branch-12-r413487

Allow |INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRI BE, NOTIFY, |NFO, PUBLISH MESSAGE
Supported: replaces, tiner

WAV Aut henti cate: Digest al gorithm=MD5, real n="asterisk", nonce="522456f4"

Content-Length: 0

Schedul i ng destruction of SIP dialog 'Zj E2ZDAwWYThi OTA2Mz YXONEWNTEWM ¢1ZG xNTK3NDU. * in 32000 nms (Met hod: SUBSCRI BE)

<--- SIP read from UDP: 10. 24. 17. 254: 37509 --->

SUBSCRI BE si p: 6001@L0. 24. 18. 124; transport =UDP SI P/ 2. 0

Via: SIP/2.0/UDP 10.24.17. 254: 37509; br anch=z9hG4bK- d8754z- c6908de6f 0126edf - 1- - - d8754z-
Max- Forwar ds: 70

Contact: <sip:Alice@0.24.17.254: 37509; t ranspor t =UDP>

To: <sip:6001@0.24. 18. 124; transpor t =UDP>

From <sip:Alice@0.24.18.124;transport=UDP>; t ag=f 519632

Cal | -1 D Zj E2ZDAWYThi OTA2Mz YX ONBWNTEWM c1ZG x NTk3NDU.

CSeq: 2 SUBSCRI BE

Expires: 1800

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

169

Accept: application/ pidf +xni

Al'low. INVITE, ACK, CANCEL, BYE, NOTIFY, REFER, MESSAGE, OPTIONS, |NFO SUBSCRI BE

Supported: replaces, norefersub, extended-refer, tiner, X-cisco-serviceuri

User-Agent: Z 3.2.21357 r21103

Aut hori zati on: Digest

username="Al i ce", real m="asteri sk", nonce="522456f 4", uri ="si p: 6001@0. 24. 18. 124; t ranspor t =UDP", r esponse="6d66dcad8c176aa3ef 7bae
€7680d2445", al gori t hmeMD5

Event: presence

Al l ow- Events: presence, kpni

Content-Length: 0

--- (17 headers O lines) ---

Creating new subscription

Sending to 10.24.17.254:37509 (no NAT)

Found peer 'Alice' for 'Alice' from 10.24.17.254: 37509

Looking for 6001 in default (domain 10.24.18.124)

Schedul i ng destruction of SIP dialog 'Zj E2ZDAWYThi OTA2Mz YXONEWNTEWM ¢1ZG xNTK3NDU. * in 1810000 ns (Met hod: SUBSCRI BE)

<--- Transmtting (no NAT) to 10.24.17.254:37509 --->

SIP/2.0 200 K

Via: SIP/2.0/UDP 10. 24. 17. 254: 37509; br anch=z9hG4bK- d8754z- c6908de6f 0126edf - 1- - - d8754z- ; r ecei ved=10. 24. 17. 254
From <sip:Aice@0.24.18.124; transport=UDP>; t ag=f 519632

To: <sip:6001@0. 24. 18. 124; transport =UDP>; t ag=as46a6e039

Cal | -1 D Zj E2ZDAWYThi OTA2Mz YX ONBWNTEWM c1ZG x NTk3NDU.

CSeq: 2 SUBSCRI BE

Server: Asterisk PBX SVN- branch-12-r413487

Allow. INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRI BE, NOTIFY, |NFO, PUBLISH, MESSACGE
Supported: replaces, timer

Expires: 1800

Contact: <sip:6001@0. 24. 18. 124: 5060>; expi r es=1800

Content-Length: 0

set _destination: Parsing <sip:Aice@Q0.24.17.254:37509; transport=UDP> for address/port to send to
set_destination: set destination to 10.24.17.254: 37509
Reliably Transmitting (no NAT) to 10.24.17.254:37509:

NOTI FY si p: Ali ce@0. 24. 17. 254: 37509; transport =UDP SI P/ 2. 0
Via: SIP/2.0/UDP 10.24.18. 124: 5060; br anch=z9hG4bK14aacddc
Max- Forwar ds: 70

From <sip:6001@0. 24. 18. 124; transport =UDP>; t ag=as46a6e039
To: <sip:Alice@l0. 24. 18. 124; tr anspor t =UDP>; t ag=f 519632
Contact: <sip:6001@0.24.18. 124: 5060>

Cal | -1 D Zj E2ZDAWYThi OTA2Mz YX ONBWNTEWM c1ZG x NTk3NDU.

CSeq: 102 NOTI FY

User- Agent: Asterisk PBX SVN-branch-12-r413487
Subscription-State: active

Event: presence

Cont ent - Type: application/ pidf +xm

Cont ent - Lengt h: 530

<?xm version="1.0" encodi ng="1SO 8859-1"?>

<presence xm ns="urn:ietf:params: xn:ns:pidf"

xm ns: pp="urn:ietf:parans: xm : ns: pi df : person”

xm ns: es="urn:ietf:params: xm : ns: pi df : rpi d: status: rpid-status"
xm ns: ep="urn:ietf:parans: xm :ns: pidf:rpid:rpid-person”
entity="sip: Alice@O0.24.18.124">

<pp: per son><st at us>

<ep:activities><ep: away/ ></ep: activities>

</ st at us></ pp: per son>

<not e>Unavai | abl e</ not e>

<tuple id="6001">

<contact priority="1">sip:6001@l0.24. 18. 124</ cont act >
<st at us><basi c>cl osed</ basi c></ st at us>

</tupl e>

</ presence>

<--- SIP read from UDP: 10. 24. 17. 254: 37509 --->

SIP/2.0 200 K

Via: SIP/2.0/UDP 10. 24. 18. 124: 5060; br anch=z9hG4bK14aacddc
Contact: <sip:Alice@0.24.17.254: 37509; t ranspor t =UDP>

To: <sip:Alice@l0. 24. 18. 124; tr anspor t =UDP>; t ag=f 519632
From <sip:6001@0. 24. 18. 124; transport =UDP>; t ag=as46a6e039
Cal | -1 D Zj E2ZDAWYThi OTA2Mz YX ONBWNTEWM c1ZG x NTk3NDU.

CSeq: 102 NOTI FY

User-Agent: Z 3.2.21357 r21103

Content-Length: 0

--- (9 headers 0 lines) ---

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 170

Once the subscription has taken place, there is a command to list them. "sip show subscriptions"

*CLI > sip show subscriptions

Peer User Call ID Ext ensi on Last state Type Mai | box Expiry
10.24.17. 254 Alice Zj E2ZDAWYThi OTA 6001 @lef aul t Unavai | abl e pi df +xm <none> 001800
1 active SIP subscription

From this point onward, Asterisk should send out a SIP NOTIFY to the Alice peer whenever state changes for any of the devices mapped to the hint 6001.
Alice's phone should then reflect that state on its display.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 171

Configuring res_pjsip

Overview

This page and its sub-pages are intended to help an administrator configure the new SIP resources and channel driver included with Asterisk 12. The
channel driver itself being chan_pjsip which depends on res_pjsip and its many associated modules. The res_pjsip module handles configuration, so we'll
mostly speak in terms of configuring res_pjsip.

A variety of reference content is provided in the following sub-pages.

If you are moving from the old channel driver, then look at Migrating from chan_sip to res_pjsip.

For basic config examples look at res_pjsip Configuration Examples.

For detailed explanation of the res_pjsip config file go to PJSIP Configuration Sections and Relationships.
You can also find info on Dialing PJSIP Channels.

Maybe you're migrating to IPv6 and need to learn about Configuring res_pjsip for IPv6

Before You Configure

This page assumes certain knowledge, or that you have completed a few prerequisites.

® You have installed pjproject, a dependency for res_pjsip.
® You have Installed Asterisk including the res_pjsip and chan_pjsip modules and their dependencies.
® You understand basic Asterisk concepts. Including the role of extensions.conf (dialplan) in your overall Asterisk configuration.

Quick Start

If you like to figure out things as you go; here's a few quick steps to get you started.

® Understand that res_pjsip is configured through pjsip.conf. This is where you'll be configuring everything related to your inbound or
outbound SIP accounts and endpoints.
® Look at the res_pjsip Configuration Examples section. Grab the example most appropriate to your goal and use that to replace your
pjsip.conf.
® Reference documentation for all configuration parameters is available on the wiki:
® Core res_pjsip configuration options
® Configuration options for ACLs in res_pjsip_acl
® Configuration options for outbound registration, provided by res_pjsip_outbound_registration
® Configuration options for endpoint identification by IP address, provided by res_pjsip_endpoint_identifier_ip
® You'll need to tweak details in pjsip.conf and on your SIP device (for example IP addresses and authentication credentials) to get it
working with Asterisk.
Refer back to the config documentation on the wiki or the sample pjsip.conf if you get confused.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 172

https://wiki/display/AST/Asterisk+12+Configuration_res_pjsip
https://wiki/display/AST/Asterisk+12+Configuration_res_pjsip_acl
https://wiki/display/AST/Asterisk+12+Configuration_res_pjsip_outbound_registration
https://wiki/display/AST/Asterisk+12+Configuration_res_pjsip_endpoint_identifier_ip

PJSIP Configuration Sections and Relationships

Configuration Section Format

pjsip.conf is a flat text file composed of sections like most configuration files used with Asterisk. Each section defines configuration for a configuration
object within res_pjsip or an associated module.

Sections are identified by names in square brackets. (see SectionName below)

Each section has one or more configuration options that can be assigned a value by using an equal sign followed by a value. (see ConfigOption and Val
ue below)These options and values are the configuration for a particular component of functionality provided by the configuration object's respective
Asterisk modules.

Every section will have a type option that defines what kind of section is being configured. You'll see that in every example config section below.

Syntax for res_sip config objects

[SectionName]
ConfigOption = Value
ConfigOption = Value

On this Page

Configuration Section Format

Config Section Help and Defaults

Section Names

Section Types

Relationships of Configuration Objects in pjsip.conf

Config Section Help and Defaults
Reference documentation for all configuration parameters is available on the wiki:

® Core res_pjsip configuration options

® Configuration options for ACLs in res_pjsip_acl

® Configuration options for outbound registration, provided by res_pjsip_outbound_registration

® Configuration options for endpoint identification by IP address, provided by res_pjsip_endpoint_identifier_ip

The same documentation is available at the Asterisk CLI as well. You can use "config show help <res_pjsip module name> <configobject> <configoption>"
to get help on a particular option. That help will typically describe the default value for an option as well.

@ Defaults: For many config options, it's very helpful to understand their default behavior. For example, for the endpoint section "transport="
option, if no value is assigned then Asterisk will *DEFAULT* to the first configured transport in pjsip.conf which is valid for the URI we are trying
to contact.

Section Names

In most cases, you can name a section whatever makes sense to you. For example you might name a transport [transport-udp-nat] to help you remember
how that section is being used.

However, in some cases, (endpoint and aor types) the section name has a relationship to its function. In the case of endpoint and aor their names must
match the user portion of the SIP URI in the "From" header for inbound SIP requests. The exception to that rule is if you have an identify section configured
for that endpoint. In that case the inbound request would be matched by IP instead of against the user in the "From" header.

Section Types

Below is a brief description of each section type and an example showing configuration of that section only. The module providing the configuration object
related to the section is listed in parentheses next to each section name.

There are dozens of config options for some of the sections, but the examples below are very minimal for the sake of simplicity.

ENDPOINT

(provided by module: res_pjsip)

Endpoint configuration provides numerous options relating to core SIP functionality and ties to other sections such as auth, aor and transport. You can't
contact an endpoint without associating one or more AoR sections. An endpoint is essentially a profile for the configuration of a SIP endpoint such as a
phone or remote server.

w EXAMPLE BASIC CONFIGURATION

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 173

https://wiki.asterisk.org/wiki/display/AST/Asterisk+12+Configuration_res_pjsip
https://wiki.asterisk.org/wiki/display/AST/Asterisk+12+Configuration_res_pjsip_acl
https://wiki.asterisk.org/wiki/display/AST/Asterisk+12+Configuration_res_pjsip_outbound_registration
https://wiki.asterisk.org/wiki/display/AST/Asterisk+12+Configuration_res_pjsip_endpoint_identifier_ip

[6001]

t ype=endpoi nt

cont ext =def aul t

di sal | ow=al

al | ow=ul aw
transport =si npl etrans
aut h=aut h6001

aor s=6001

If you want to define the Caller Id this endpoint should use, then add something like the following:

trust _i d_out bound=yes
cal | eri d=Spaceman Spiff <6001>

TRANSPORT

(provided by module: res_pjsip)

Configure how res_pjsip will operate at the transport layer. For example, it supports configuration options for protocols such as TCP, UDP or WebSockets
and encryption methods like TLS/SSL.

You can setup multiple transport sections and other sections (such as endpoints) could each use the same transport, or a unique one. However, there are
a couple caveats for creating multiple transports:

® They cannot share the same IP+port or IP+protocol combination. That is, each transport that binds to the same IP as another must use a
different port or protocol.
® PJSIP does not allow multiple TCP or TLS transports of the same IP version (IPv4 or IPv6).

(D Reloading Config: Configuration for transport type sections can't be reloaded during run-time without a full module unload and load. You'll
effectively need to restart Asterisk completely for your transport changes to take effect.

w EXAMPLE BASIC CONFIGURATION
A basic UDP transport bound to all interfaces

[si npl et rans]
t ype=t ransport
pr ot ocol =udp
bi nd=0.0.0.0

Or a TLS transport, with many possible options and parameters:

[si mpl et rans]

t ype=t ransport

protocol =tls

bi nd=0.0.0.0

;various TLS specific options bel ow
cert_file=

priv_key file=

ca list _file=

ci pher=

nmet hod=

AUTH

(provided by module: res_pjsip)

Authentication sections hold the options and credentials related to inbound or outbound authentication. You'll associate other sections such as endpoints or
registrations to this one. Multiple endpoints or registrations can use a single auth config if needed.
w EXAMPLE BASIC CONFIGURATION

An example with username and password authentication

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 174

[aut h6001]

t ype=aut h

aut h_t ype=user pass
passwor d=6001

user nane=6001

And then an example with MD5 authentication

[aut h6001]

t ype=aut h

aut h_t ype=nd5
nd5_cred=51e63a3da6425a39aecc045ec45f 1ae8
user nane=6001

AOR

(provided by module: res_pjsip)

A primary feature of AOR objects (Address of Record) is to tell Asterisk where an endpoint can be contacted. Without an associated AOR section, an
endpoint cannot be contacted. AOR objects also store associations to mailboxes for MWI requests and other data that might relate to the whole group of
contacts such as expiration and qualify settings.

When Asterisk receives an inbound registration, it'll look to match against available AORs.

Registrations: The name of the AOR section must match the user portion of the SIP URI in the "To:" header of the inbound SIP registration. That will
usually be the "user name" set in your hard or soft phones configuration.
~» EXAMPLE BASIC CONFIGURATION

First, we have a configuration where you are expecting the SIP User Agent (likely a phone) to register against the AOR. In this case, the contact
objects will be created automatically. We limit the maximum contact creation to 1. We could do 10 if we wanted up to 10 SIP User Agents to be able to
register against it.

[6001]
t ype=aor
max_cont act s=1

Second, we have a configuration where you are not expecting the SIP User Agent to register against the AOR. In this case, you can assign contacts
manually as follows. We don't have to worry about max_contacts since that option only affects the maximum allowed contacts to be created through
external interaction, like registration.

[6001]
t ype=aor
contact =si p: 6001@92. 0. 2. 1: 5060

Third, it's useful to note that you could define only the domain and omit the user portion of the SIP URI if you wanted. Then you could define the user p
ortion dynamically in your dialplan when calling the Dial application. You'll likely do this when building an AOR/Endpoint combo to use for dialing out to
an ITSP. For example: "Dial(PJSIP/${EXTEN}@mytrunk)"

[myt runk]
t ype=aor
cont act =si p: 203. 0. 113. 1: 5060

REGISTRATION

(provided by module: res_pjsip_outbound_registration)

The registration section contains information about an outbound registration. You'll use this when setting up a registration to another system whether it's
local or a trunk from your ITSP.
» EXAMPLE BASIC CONFIGURATION

This example shows you how you might configure registration and outbound authentication against another Asterisk system, where the other system is
using the older chan_sip peer setup.

This example is just the registration itself. You'll of course need the associated transport and auth sections. Plus, if you want to receive calls from the
far end (who now knows where to send calls, thanks to your registration!) then you'll need endpoint, AOR and possibly identify sections setup to match
inbound calls to a context in your dialplan.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 175

[myt runk]

type=regi stration

transport =si npl etrans

out bound_aut h=nyt r unk

server _uri =si p: nyaccount nane@03. 0. 113. 1: 5060
client _uri=sip: myaccount name@92. 0. 2. 1: 5060
retry_interval =60

And an example that may work with a SIP trunking provider

[myt runk]

type=registration

transport =si npl etrans

out bound_aut h=myt r unk

server _uri =si p: si p. exanpl e. com
client_uri=sip:1234567890@i p. exanpl e. com
retry_interval =60

What if you don't need to authenticate? You can simply omit the outbound_auth option.

DOMAIN_ALIAS

(provided by module: res_pjsip)

Allows you to specify an alias for a domain. If the domain on a session is not found to match an AoR then this object is used to see if we have an alias for
the AoR to which the endpoint is binding. This sections name as defined in configuration should be the domain alias and a config option (domain=) is
provided to specify the domain to be aliased.
» EXAMPLE BASIC CONFIGURATION
[exanpl e2. con
t ype=donmi n_al i as
domai n=exanpl e. com

ACL

(provided by module: res_pjsip_acl)

The ACL module used by ‘res_pjsip'. This module is independent of 'endpoints' and operates on all inbound SIP communication using res_pjsip. Features
such as an Access Control List, as defined in the configuration section itself, or as defined in acl.conf. ACL's can be defined specifically for source IP
addresses, or IP addresses within the contact header of SIP traffic.

~ EXAMPLE BASIC CONFIGURATION

A configuration pulling from the acl.conf file:

[acl]
t ype=acl
acl =exanpl e_nanmed_acl 1

A configuration defined in the object itself:

[acl]

t ype=acl
deny=0.0.0.0/0.0.0.0
perm t =209. 16. 236. 0
perm t =209. 16. 236. 1

A configuration where we are restricting based on contact headers instead of IP addresses.

[acl]

t ype=acl

contact deny=0.0.0.0/0.0.0.0
cont act perni t =209. 16. 236. 0
cont act perm t=209. 16. 236. 1

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 176

All of these configurations can be combined.

IDENTIFY

(provided by module: res_pjsip_endpoint_identifier_ip)

Controls how the res_pjsip_endpoint_identifier_ip module determines what endpoint an incoming packet is from. If you don't have an identify section
defined, or else you have res_pjsip_endpoint_identifier_ip loading after res_pjsip_endpoint_identifier_user, then res_pjsip_endpoint_identifier_user will
identify inbound traffic by pulling the user from the "From:" SIP header in the packet. Basically the module load order, and your configuration will both
determine whether you identify by IP or by user.

w EXAMPLE BASIC CONFIGURATION

Its use is quite straightforward. With this configuration if Asterisk sees inbound traffic from 203.0.113.1 then it will match that to Endpoint 6001.

[6001]
type=identify
endpoi nt =6001

mat ch=203. 0. 113. 1

CONTACT

(provided by module: res_pjsip)

The contact config object effectively acts as an alias for a SIP URIs and holds information about an inbound registrations. Contact objects can be
associated with an individual SIP User Agent and contain a few config options related to the connection. Contacts are created automatically upon
registration to an AOR, or can be created manually by using the "contact=" config option in an AOR section. Manually configuring a CONTACT config
object itself is outside the scope of this "getting started" style document.

Relationships of Configuration Objects in pjsip.conf
Now that you understand the various configuration sections related to each config object, lets look at how they interrelate.

You'll see that the new SIP implementation within Asterisk is extremely flexible due to its modular design. A diagram will help you to visualize the
relationships between the various configuration objects. The following entity relationship diagram covers only the configuration relationships between the
objects. For example if an endpoint object requires authorization for registration of a SIP device, then you may associate a single auth object with the
endpoint object. Though many endpoints could use the same or different auth objects.

Configuration Flow: This lets you know which direction the objects are associated to other objects. e.g. The identify config section has an option
"endpoint=" which allows you to associate it with an endpoint object.

Entity Relationships Relationship Descriptions

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 177

ENDPOINT

Cﬂnﬁguraﬂﬂn * Many ENDPOINTS can be associated with many
IDEMTIFY AORs

FIUW ® Zero to many ENDPOINTS can be associated
£ with zero to one AUTHSs

® Zero to many ENDPOINTS can be associated
with at least one TRANSPORT

® Zero to one ENDPOINTSs can be associated with
REGISTRATIOM ENDPOINT an IDENTIFY
“r W ACL REGISTRATION

® Zero to many REGISTRATIONS can be
associated with zero to one AUTHs

® Zero to many REGISTRATIONS can be

DOMAIN ALIAS associated with at least one TRANSPORT

AOR

1 - M ® Many ENDPOINTSs can be associated with many

AORs
TRANSPORT ADR - - ® Many AORs can be associated with many

CONTACTs

!h CONTACT

AUTH CONTACT . Xlg??ys CONTACTS can be associated with many

IDENTIFY

® Zero to One ENDPOINTSs can be associated with
an IDENTIFY object

ACL, DOMAIN_ALIAS

® These objects don't have a direct configuration
relationship to the other objects.

= Unfamiliar with ERD? Click here to see a key...
{ One

< Many

H One (and only one)

Ot Zero or one

[
= One or many

Q< Zero or many

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 178

res_pjsip Configuration Examples

Below are some sample configurations to demonstrate various scenarios with complete pjsip.conf files. To see examples side by side with old chan_sip
config head to Migrating from chan_sip to res_pjsip. Explanations of the config sections found in each example can be found in PJSIP Configuration
Sections and Relationships.

A tutorial on secure and encrypted calling is located in the Secure Calling section of the wiki.
An endpoint with a single SIP phone with inbound registration to Asterisk

+ EXAMPLE CONFIGURATION
; TRANSPORT

[si npl et rans]
t ype=t ransport
pr ot ocol =udp
bi nd=0.0.0.0

; EXTENSI ON 6001

[6001]

t ype=endpoi nt
cont ext =i nt er nal
di sal | on=al |

al | ow=ul aw

aut h=aut h6001
aor s=6001

[aut h6001]

t ype=aut h

aut h_t ype=user pass
passwor d=6001

user nane=6001

[6001]
t ype=aor
max_cont act s=1

® auth=is used for the endpoint as opposed to outbound_auth= since we want to allow inbound registration for this endpoint
® max_contacts= is set to something non-zero as we want to allow contacts to be created through registration

On this Page

¢ An endpoint with a single SIP phone with inbound registration to Asterisk
® A SIP trunk to your service provider, including outbound registration
® Multiple endpoints with phones registering to Asterisk, using templates

A SIP trunk to your service provider, including outbound registration

» EXAMPLE CONFIGURATION
Trunks are a little tricky since many providers have unique requirements. Your final configuration may differ from what you see here.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 179

; TRANSPORTS

[si npl et rans]
t ype=t ransport
pr ot ocol =udp
bi nd=0.0.0.0

; TRUNK

[myt runk]

type=registration

out bound_aut h=nyt r unk

server _uri =si p: si p. exanpl e. com
client_uri=sip:1234567890@&@i p. exanpl e. com
retry_interval =60

[myt runk]

t ype=aut h

aut h_t ype=user pass
passwor d=1234567890
user nane=1234567890

[nytrunk]
t ype=aor
cont act =si p: si p. exanpl e. com 5060

[myt runk]

t ype=endpoi nt

cont ext =f r om ext er nal
di sal | ow=al |

al | ow=ul aw

out bound_aut h=nyt r unk
aor s=nyt runk

[myt runk]
type=identify

endpoi nt =nyt r unk

mat ch=si p. exanpl e. com

"contact=sip:203.0.113.1:5060", we don't define the user portion statically since we'll set that dynamically in dialplan when we call the Dial
application.

See the dialing examples in the section "Dialing using chan_pjsip" for more.

"outbound_auth=mytrunk", we use "outbound_auth" instead of "auth" since the provider isn't typically going to authenticate with us when
calling, but we will probably

have to authenticate when calling through them.

® \We use an identify object to map all traffic from the provider's IP as traffic to that endpoint since the user portion of their From:
header may vary with each call.

This example assumes that sip.example.com resolves to 203.0.113.1

@ You can specify the transport type by appending it to the server_uri and client_uri parameters. e.g.:

[myt runk]

type=regi stration

out bound_aut h=nyt r unk

server _uri =si p:sip.exanpl e.com ;transport=tcp
client_uri=sip:1234567890@i p. exanpl e. com ; transport=tcp
retry_interval =60

Multiple endpoints with phones registering to Asterisk, using templates
+w EXAMPLE CONFIGURATION

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 180

http://sip.example.com

We want to show here that generally, with a large configuration you'll end up using templates to make configuration easier to handle when scaling. This
avoids having redundant code in every similar section that you create.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 181

; TRANSPORT

[si npl et rans]
t ype=t ransport
pr ot ocol =udp
bi nd=0.0.0.0

; ENDPO NT TEMPLATES

[endpoi nt - basic] (!)
t ype=endpoi nt

cont ext =i nterna

di sal | ow=al

al | ow=ul aw

[aut h-userpass] (!)
t ype=aut h
aut h_t ype=user pass

[aor-single-reg] (!)
t ype=aor
max_cont act s=1

; EXTENSI ON 6001

[6001] (endpoi nt - basi c)
aut h=aut h6001
aor s=6001

[aut h6001] (aut h- user pass)
passwor d=6001
user nane=6001

[6001] (aor-si ngl e-req)

; EXTENSI ON 6002

[6002] (endpoi nt - basi c)
aut h=aut h6002
aor s=6002

[aut h6002] (aut h- user pass)
passwor d=6002
user nane=6002

[6002] (aor-si ngl e-req)

; EXTENSI ON 6003

[6003] (endpoi nt - basi c)
aut h=aut h6003
aor s=6003

[aut h6003] (aut h- user pass)
passwor d=6003
user nane=6003

[6003] (aor-si ngl e-regq)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 182

Obviously the larger your configuration is, the more templates will benefit you. Here we just break apart the endpoints with templates, but you could do
that with any config section that needs instances with variation, but where each may share common settings with their peers.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 183

Migrating from chan_sip to res_pjsip

Overview

This page documents any useful tools, tips or examples on moving from the old chan_sip channel driver to the new chan_pjsip/res_pjsip added in Asterisk
12.

Configuration Conversion Script

Contained within a download of Asterisk, there is a Python script, sip_to_pjsip.py, found within the contrib/scripts/sip_to_pjsip subdirectory, that provides a
basic conversion of a sip.conf config to a pjsip.conf config. It is not intended to work for every scenario or configuration; for basic configurations it should
provide a good example of how to convert it over to pjsip.conf style config.

To insure that the script can read any #include'd files, run it from the /etc/asterisk directory or in another location with a copy of the sip.conf and any
included files. The default input file is sip.conf, and the default output file is pjsip.conf. Any included files will also be converted, and written out with a pjsip_
prefix, unless changed with the --prefix=xxx option.

Command line usage

/path/tol asterisk/source/contrib/scripts/sip_to_pjsip/sip_to_pjsip.py --help
Usage: sip_to_pjsip.py [options] [input-file [output-file]]
input-file defaults to 'sip.conf’
output-file defaults to 'pjsip.conf’
Opti ons:

-h, --help show this hel p nessage and exit

-p PREFIX, --prefix=PREFI X

output prefix for include files

Example of Use

cd /etc/asterisk

/path/tol/ asterisk/source/contrib/scripts/sip_to_pjsip/sip_to_pjsip.py
Readi ng si p. conf

Converting to PJSIP...

Witing pjsip.conf

On this Page

® Overview
® Configuration Conversion Script

¢ Side by Side Examples of sip.conf and pjsip.conf Configuration
® Example Endpoint Configuration
® Example SIP Trunk Configuration

® Disabling res_pjsip and chan_pjsip

® Network Address Translation (NAT)

Side by Side Examples of sip.conf and pjsip.conf Configuration

These examples contain only the configuration required for sip.conf/pjsip.conf as the configuration for other files should be the same, excepting the Dial
statements in your extensions.conf. Dialing with PJSIP is discussed in Dialing PJSIP Channels.

It is important to know that PJSIP syntax and configuration format is stricter than the older chan_sip driver. When in doubt, try to follow the
documentation exactly, avoid extra spaces or strange capitalization. Always check your logs for warnings or errors if you suspect something is

wrong.

Example Endpoint Configuration

This examples shows the configuration required for:

® two SIP phones need to make calls to or through Asterisk, we also want to be able to call them from Asterisk
* for them to be identified as users (in the old chan_sip) or endpoints (in the new res_sip/chan_pjsip)

® both devices need to use username and password authentication

® 6001 is setup to allow registration to Asterisk, and 6002 is setup with a static host/contact

sip.conf pjsip.conf

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 184

[general] [si npl et rans]

udpbi ndaddr =0. 0. 0.0 type=t ransport
pr ot ocol =udp
[6001] bi nd=0.0.0.0
type=friend
host =dynanmi c [6001]
di sal | on=al | type = endpoi nt
al | ow=ul aw context = internal
cont ext =i nt er nal di sallow = al |
secret=1234 al l ow = ul aw
aors = 6001
[6002] auth = auth6001
type=friend
host =192.0.2. 1 [6001]
di sal | on=al | type = aor
al | ow=ul aw max_contacts = 1
cont ext =i nt er nal
secret=1234 [aut h6001]
type=aut h

aut h_t ype=user pass
passwor d=1234
user nanme=6001

[6002]
type = endpoi nt
context = internal

di sallow = all
al l ow = ul aw
aors = 6002
auth = aut h6002

[6002]
type = aor
contact = sip:6002@92.0.2.1:5060

[aut h6002]

t ype=aut h

aut h_t ype=user pass
passwor d=1234

user nane=6001

Example SIP Trunk Configuration

This shows configuration for a SIP trunk as would typically be provided by an ITSP. That is registration to a remote server, authentication to it and a
peer/endpoint setup to allow inbound calls from the provider.

® S|P provider requires registration to their server with a username of "myaccountname" and a password of "1234567890"

® SIP provider requires registration to their server at the address of 203.0.113.1:5060

® SIP provider requires outbound calls to their server at the same address of registration, plus using same authentication details.
® S|P provider will call your server with a user name of "mytrunk". Their traffic will only be coming from 203.0.113.1

sip.conf pjsip.conf

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 185

[general]
udpbi ndaddr =0. 0. 0.0

regi ster => nmyaccount nane: 1234567890@03. 0. 113. 1: 5060

[myt runk]

type=friend

secret =1234567890

user nane=myaccount nane
host =203. 0. 113. 1

di sal | ow=al

al | ow=ul aw

cont ext =f r om ext er nal

Disabling res_pjsip and chan_pjsip

[si npl et rans]
t ype=transport
pr ot ocol =udp
bi nd=0.0.0.0

[myt runk]

type=registration

out bound_aut h=nyt r unk

server _uri =si p: myaccount name@O0:
client _uri=sip: myaccount name@O0:

[myt runk]

t ype=aut h

aut h_t ype=user pass
passwor d=1234567890
user nane=myaccount nane

[myt runk]
t ype=aor
contact =si p: 203. 0. 113. 1: 5060

[myt runk]

t ype=endpoi nt

cont ext =f rom ext er na
di sal | ow=al |

al | ow=ul aw

out bound_aut h=nyt r unk
aor s=nytrunk

[myt runk]
type=identify
endpoi nt =nyt runk
mat ch=203. 0. 113. 1

You may want to keep using chan_sip for a short time in Asterisk 12+ while you migrate to res_pjsip. In that case, it is best to disable res_pjsip unless you

understand how to configure them both together.

There are several methods to disable or remove modules in Asterisk. Which method is best depends on your intent.

If you have built Asterisk with the PJSIP modules, but don't intend to use them at this moment, you might consider the following:

1. Edit the file modules.conf in your Asterisk configuration directory. (typically /etc/asterisk/)

nol oad => res_pj sip.so

nol oad => res_pj si p_pubsub. so

nol oad => res_pj si p_session. so

nol oad => chan_pj si p. so

nol oad => res_pj sip_exten_state.so
nol oad => res_pjsip_l og_forwarder. so

Having a noload for the above modules should (at the moment of writing this) prevent any PJSIP related modules from loading.

2. Restart Asterisk!

Other possibilities would be:

® Remove all PJSIP modules from the modules directory (often, /ust/lib/asterisk/modules)
® Remove the configuration file (pjsip.conf)
® Un-install and re-install Asterisk with no PJSIP related modules.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

186

® |f you are wanting to use chan_pjsip alongside chan_sip, you could change the port or bind interface of your chan_pjsip transport in
pjsip.conf

Network Address Translation (NAT)

When configured with chan_sip, peers that are, relative to Asterisk, located behind a NAT are configured using the nat parameter. In versions 1.8 and
greater of Asterisk, the following nat parameter options are available:

Value Description
no Do not perform NAT handling other than RFC 3581.
force_rport When the rport parameter is not present, send responses to the source IP address and port anyway, as though the rport

parameter was present

comedia Send media to the address and port from which Asterisk received it, regardless of where SDP indicates that it should be
sent

auto_force_rport | Automatically enable the sending of responses to the source IP address and port, as though rport were present, if Asterisk
detects NAT. Default.

auto_comedia Automatically send media to the port from which Asterisk received it, regardless of where SDP indicates that it should be
sent, if Asterisk detects NAT.

Versions of Asterisk prior to 1.8 had less granularity for the nat parameter:

Value Description
no Do not perform NAT handling other than RFC 3581

yes Send media to the port from which Asterisk received it, regardless of where SDP indicates that it should be sent; send responses to the
source IP address and port as though rport were present; and rewrite the SIP Contact to the source address and port of the request so
that subsequent requests go to that address and port.

never Do not perform any NAT handling

route Send media to the port from which Asterisk received it, regardless of where SDP indicates that it should be sent and rewrite the SIP
Contact to the source address and port of the request so that subsequent requests go to that address and port.

In chan_pjsip, the endpoint options that control NAT behavior are:

® rtp_symmetric - Send media to the address and port from which Asterisk receives it, regardless of where SDP indicates that it should be
sent

* force_rport - Send responses to the source IP address and port as though port were present, even if it's not

® rewrite_contact - Rewrite SIP Contact to the source address and port of the request so that subsequent requests go to that address and
port.

Thus, the following are equivalent:

chan_sip (sip.conf) chan_pjsip (pjsip.conf)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 187

http://www.ietf.org/rfc/rfc3581.txt

[mypeer 1]
type=peer
nat =yes

PR

[mypeer 2]
t ype=peer
nat =no

[mypeer 3]
t ype=peer
nat =never

[mypeer 4]
t ype=peer
nat =rout e

PR

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

[nypeer 1]

t ype=endpoi nt
rtp_symetric=yes
force_rport=yes
rewite_contact=yes

[mypeer 2]

t ype=endpoi nt
rtp_symetric=no
force_rport=no
rewite_contact=no

[mypeer 3]

t ype=endpoi nt
rtp_symetric=no
force_rport=no
rewite_contact=no

[nypeer 4]

t ype=endpoi nt
rtp_symetric=no
force_rport=yes
rewite_contact=yes

188

Dialing PJSIP Channels

Dialing from dialplan

We are assuming you already know a little bit about the Dial application here. To see the full help for it, see "core show help application dial" on the Asterisk
CLI, or see Application_Dial

Below we'll simply dial an endpoint using the chan_pjsip channel driver. This is really going to look at the AOR of the same name as the endpoint and start
dialing the first contact associated.

exten => _6XXX, 1, Di al (PJSI P/ ${ EXTEN})
To dial all the contacts associated with the endpoint, use the PJSIP_DIAL_CONTACTS function. It evaluates to a list of contacts separated by &, which
causes the Dial application to call them simultaneously.

exten => _6XXX, 1, Di al (${PJISI P_DI AL_CONTACTS(${ EXTEN}) })
Heres how you would dial with an explicit SIP URI, user and domain, via an endpoint (in this case dialing out a trunk), but not using its associated
AOR/contact objects.

exten => _9NXXNXXXXXX, 1, Di al (PJSI P/ nytrunk/ si p: ${ EXTEN: 1} @03. 0. 113. 1: 5060)
This uses a contact(and its domain) set in the AOR associated with the mytrunk endpoint, but still explicitly sets the user portion of the URI in the dial
string. For the AOR's contact, you would define it in the AOR config without the user name.

exten => _9NXXNXXXXXX, 1, Di al (PJISI P/ ${ EXTEN: 1} @ryt r unk)

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 189

https://wiki/display/AST/Application_Dial

Configuring res_pjsip to work through NAT

Here we can show some examples of working configuration for Asterisk's SIP channel driver when Asterisk is behind NAT (Network Address Translation).

If you are migrating from chan_sip to chan_pjsip, then also read the NAT section in Migrating from chan_sip to res_pjsip for helpful tips.

Asterisk and Phones Connecting Through NAT to an ITSP
This example should apply for most simple NAT scenarios that meet the following criteria:

Asterisk and the phones are on a private network.

There is a router interfacing the private and public networks. Where the public network is the Internet.

The router is performing Network Address Translation and Firewall functions.

The router is configured for port-forwarding, where it is mapping the necessary ranges of SIP and RTP traffic to your internal Asterisk
server.

In this example the router is port-forwarding WAN inbound TCP/UDP 5060 and UDP 10000-20000 to LAN 192.0.2.10

This example was based on a configuration for the ITSP SIP.US and assuming you swap out the addresses and credentials for real ones, it should work for
a SIP.US SIP account.

Devices Involved in the Example

Using RFC5737 documentation addresses

Device IP in example

VOIP Phone(6001) | 192. 0. 2. 20

PC/Asterisk 192.0.2.10

Router LAN: 192.0.2.1
WAN: 198. 51.100.5

ITSP SIP gateway = 203. 0. 113. 1(gwl. exanpl e. com
203. 0. 113. 2(gw2. exanpl e. con)

For the sake of a complete example and clarity, in this example we use the following fake details:
ITSP Account number: 1112223333

DID number provided by ITSP: 19998887777

pjsip.conf Configuration

We are assuming you have already read the Configuring res_pjsip page and have a basic understanding of Asterisk. For this NAT example, the important
config options to note are local_net, external_media_address and external_signaling_address in the transport type section and direct_media in the
endpoint section. The rest of the options may depend on your particular configuration, phone model, network settings, ITSP, etc. The key is to make sure
you have those three options set appropriately.

local_net

This is the IP network that we want to consider our local network. For communication to addresses within this range, we won't apply any NAT-related
settings, such as the external* options below.
external_media_address

This is the external IP address to use in RTP handling. When a request or response is sent out from Asterisk, if the destination of the message is outside
the IP network defined in the option 'local_net', and the media address in the SDP is within the localnet network, then the media address in the SDP will be
rewritten to the value defined for 'external_media_address'.

external_signaling_address

This is much like the external_media_address setting, but for SIP signaling instead of RTP media. The two external* options mentioned here should be set
to the same address unless you separate your signaling and media to different addresses or servers.
direct_media

Determines whether media may flow directly between endpoints

Together these options make sure the far end knows where to send back SIP and RTP packets, and direct_media ensures Asterisk stays in the media
path. This is important, because our Asterisk system has a private IP address that the ITSP cannot route to. We want to make sure the SIP and RTP traffic
comes back to the WAN/Public internet address of our router. The sections prefixed with "sipus" are all configuration needed for inbound and outbound
connectivity of the SIP trunk, and the sections named 6001 are all for the VOIP phone.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 190

https://www.sip.us/
http://tools.ietf.org/html/rfc5737

[transport - udp-nat]

type=transport

pr ot ocol =udp

bi nd=0.0.0.0

| ocal _net=192.0.2.0/24

| ocal _net=127.0.0.1/32

ext ernal _medi a_address=198. 51. 100. 5

ext ernal _si gnal i ng_addr ess=198. 51. 100. 5

[si pus_req]

type=registration
transport=transport-udp- nat

out bound_aut h=si pus_aut h

server _uri =si p: gwl. exanpl e. com
client_uri=sip:1112223333@wl. exanpl e. com
contact _user=19998887777
retry_interval =60

[si pus_aut h]

type=auth

aut h_t ype=user pass
password=************
usernane=1112223333
real megwl. exanpl e. com

[si pus_endpoi nt]

t ype=endpoi nt
transport=transport-udp- nat
cont ext =f r om ext er na

di sal | on=al

al | ow=ul aw

out bound_aut h=si pus_aut h
aor s=si pus_aor

di rect _nedi a=no

from domai n=gwl. exanpl e. com

[si pus_aor]

t ype=aor

cont act =si p: gwl. exanpl e. com
cont act =si p: gw2. exanpl e. com

[sipus_identify]
type=identify

endpoi nt =si pus_endpoi nt
mat ch=203. 0. 113. 1

mat ch=203. 0. 113. 2

[6001]

t ype=endpoi nt
context=frominterna

di sal | on=al

al | on=ul aw
transport=transport - udp- nat
aut h=6001

aor s=6001

di rect _nedi a=no

[6001]
type=auth

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 191

aut h_t ype=user pass
passwor Jo* ko k ok k ok k
user nane=6001

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 192

[6001]
type=aor
max_cont act s=2

For Remote Phones Behind NAT

In the above example we assumed the phone was on the same local network as Asterisk. Now, perhaps Asterisk is exposed on a public address, and
instead your phones are remote and behind NAT, or maybe you have a double NAT scenario?

In these cases you will want to consider the below settings for the remote endpoints.
media_address

IP address used in SDP for media handling

At the time of SDP creation, the IP address defined here will be used as

the media address for individual streams in the SDP.

NOTE: Be aware that the 'external_media_address' option, set in Transport
configuration, can also affect the final media address used in the SDP.
rtp_symmetric

Enforce that RTP must be symmetric. Send RTP back to the same address/port we received it from.
force_rport

Force RFC3581 compliant behavior even when no rport parameter exists. Basically always send SIP responses back to the same port we received SIP
requests from.
direct_media

Determines whether media may flow directly between endpoints.
rewrite_contact

Determine whether SIP requests will be sent to the source IP address and port, instead of the address provided by the endpoint.

Clients Supporting ICE,STUN,TURN

This is really relevant to media, so look to the section here for basic information on enabling this support and we'll add relevant examples later.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 193

https://wiki/display/AST/Interactive+Connectivity+Establishment+%28ICE%29+in+Asterisk

Setting up PJSIP Realtime

® Overview
® Installing Dependencies
Creating the MySQL Database
Installing and Using Alembic
Configuring ODBC
Connecting PJSIP Sorcery to the Realtime Database
Optionally configuring sorcery for realtime and non-realtime data sources
Realtime Configuration
Asterisk Startup Configuration
Asterisk PJSIP configuration
Endpoint Population
A Little Dialplan
Reserved Characters
Conclusion

Overview

This tutorial describes the configuration of Asterisk's PJSIP channel driver with the "realtime" database storage backend. The realtime interface allows
storing much of the configuration of PJSIP, such as endpoints, auths, aors and more, in a database, as opposed to the normal flat-file storage of pjsip.conf.

Installing Dependencies

For the purposes of this tutorial, we will assume a base Ubuntu 12.0.4.3 x86_64 server installation, with the OpenSSH server and LAMP server options,
and that Asterisk will use its ODBC connector to reach a back-end MySQL database.

Beyond the normal packages needed to install Asterisk 12 on such a server (build-essential, libncurses5-dev, uuid-dev, libjansson-dev, libxml2-dev,
libsglite3-dev) as well as the Installation of pjproject, you will need to install the following packages:

¢ unixodbc and unixodbc-dev
® ODBC and the development packages for building against ODBC
® Jibmyodbc
®* The ODBC to MySQL interface package
® python-dev and python-pip
® The Python development package and the pip package to allow installation of Alembic
® python-mysqldb
® The Python interface to MySQL, which will be used by Alembic to generate the database tables

So, from the CLI, perform:

apt-get install unixodbc unixodbc-dev |ibmyodbc python-dev python-pip python-nysql db

Once these packages are installed, check your Asterisk installation's make menuconfig tool to make sure that the res_config_odbc and res_odbc resour
ce modules, as well as the res_pjsip_xxx modules are selected for installation. If they are, then go through the normal Asterisk installation process: ./conf
igure; make; make install

And, if this is your first installation of Asterisk, be sure to install the sample files: make samples

Creating the MySQL Database

Use the mysqgladmin tool to create the database that we'll use to store the configuration. From the Linux CLI, perform:

nysqladmin -u root -p create asterisk

This will prompt you for your MySQL database password and then create a database named asterisk that we'll use to store our PJSIP configuration.

Installing and Using Alembic

Alembic is a full database migration tool, with support for upgrading the schemas of existing databases, versioning of schemas, creation of new tables and
databases, and a whole lot more. A good guide on using Alembic with Asterisk can be found on the Managing Realtime Databases with Alembic wiki page.
A shorter discussion of the steps necessary to prep your database will follow.

First, install Alembic:

‘ # pip install alenbic ‘

Then, move to the Asterisk source directory containing the Alembic scripts:

‘ # cd contri b/ ast - db- manage/ ‘

Next, edit the config.ini.sample file and change the sqlalchemy.url option, e.g.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 194

http://www.unixodbc.org/
http://www.mysql.com/
https://wiki/display/AST/Managing+Realtime+Databases+with+Alembic

‘ sql al cheny.url = nysql://root: password@ ocal host/ asteri sk ‘

such that the URL matches the username and password required to access your database.

Then rename the config.ini.sample file to config.ini

‘ # cp config.ini.sanple config.ini ‘

Finally, use Alembic to setup the database tables:

‘ # alenbic -c config.ini upgrade head ‘

You'll see something similar to:

alenbic -c config.ini upgrade head

INFO [al enbic.migration] Context inpl M/SQInpl.

INFO [alenmbic.migration] WIIl assune non-transactional DDL.

INFO [al embic.migration] Running upgrade None -> 4daOc5f79a9c, Create tables

INFO [al embic.migration] Running upgrade 4daOc5f79a9c -> 43956d550a44, Add tables for pjsip
#

You can then connect to MySQL to see that the tables were created:

mysql -u root -p -D asterisk

nysql > show tabl es;

al enbi c_version |
iaxfriends |
neet me |
nusi conhol d |
ps_aors |
ps_aut hs |
ps_contacts |
ps_donwi n_al i ases |
ps_endpoint _id_ips |
ps_endpoi nts |

|

|

si ppeer s

voi cemai |
B T +
12 rows in set (0.00 sec)
nysql > quit

Configuring ODBC

Now that we have our MySQL database created and populated, we'll need to setup ODBC and Asterisk's ODBC resource to access the database. First,
we'll tell ODBC how to connect to MySQL. To do this, we'll edit the /etc/odbcinst.ini configuration file. Your file should look something like:

letc/odbcinst.ini

[MSQL]

Description = ODBC for MySQ

Driver = [usr/lib/x86_64-1inux-gnu/odbc/Iibnyodbc. so
Setup = /usr/lib/x86_64-1inux-gnu/odbc/libodbcnyS. so
UsageCount = 2

Next, we'll tell ODBC which MySQL database to use. To do this, we'll edit the /etc/odbc.ini configuration file and create a database handle called asterisk
. Your file should look something like:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 195

/etc/odbc.ini

[asterisk]

Driver = WSQ

Description = MySQL connection to ‘asterisk’ database
Server = | ocal host

Port = 3306

Dat abase asterisk

User Name = root

Password = password

Socket = /var/run/mysql d/ mysql d. sock

Take care to use your database access UserName and Password, and not necessarily what's defined in this example.

Now, we need to configure Asterisk's ODBC resource, res_odbc, to connect to the ODBC asterisk database handle that we just created. res_odbc is

configured using the /etc/asterisk/res_odbc.conf configuration file. There, you'll want:

letc/asterisk/res_odbc.conf

[asterisk]

enabl ed => yes

dsn => asterisk

user nane => root
password => password
pre-connect => yes

Again, take care to use the proper username and password.

Now, you can start Asterisk and you can check its connection to your "asterisk" MySQL database using the "asterisk" res_odbc connector to ODBC. You

can do this by executing "odbc show" from the Asterisk CLI. If everything went well, you'll see:

asterisk -vvvvc
*CLI > odbc show

ODBC DSN Settings
Nanme: asterisk
DSN: asterisk
Last connection attenpt: 1969-12-31 18:00: 00
Pool ed: No
Connected: Yes
*CLIl >

Connecting PJSIP Sorcery to the Realtime Database

The PJSIP stack uses a new data abstraction layer in Asterisk called sorcery. Sorcery lets a user build a hierarchical layer of data sources for Asterisk to
use when it retrieves, updates, creates, or destroys data that it interacts with. This tutorial focuses on getting PJSIP's configuration stored in a realtime

back-end; the rest of the details of sorcery are beyond the scope of this page.

PJSIP bases its configuration on types of objects. For more information about these types of objects, please refer to the Configuring res_pjsip wiki page.

In this case, we have a total of five objects we need to configure in Sorcery:

endpoint
auth

aor
domain
identify

We'll also configure the contact object, though we don't need it for this example.

Sorcery is configured using the /etc/asterisk/sorcery.conf configuration file. So, we need to add the following lines to the file:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

196

letc/asterisk/sorcery.conf

[res_pjsip] ; Realtine PISIP configuration w zard
endpoi nt=real ti ne, ps_endpoi nts

aut h=real ti ne, ps_aut hs

aor=real ti me, ps_aors

domai n_al i as=real ti ne, ps_donmai n_al i ases
contact=realtinme, ps_contacts

[res_pjsip_endpoint_identifier_ip]
identify=realtinme, ps_endpoint_id_ips

The items use the following nomenclature:

{object_type} = {sorcery_w zard_nane}, {w zard_argunment s}

In our case, the sorcery_w zar d_nane is realtime, and the wizard_arguments are the name of the database connector ("asterisk") to associate with
our object types. Note that the "identify" object is separated from the rest of the configuration objects. This is because this object type is provided by an
optional module (res_pjsip_endpoint_idenfifier_ip.so) and not the main PJSIP module (res_pjsip.so).

Optionally configuring sorcery for realtime and non-realtime data sources

If you want to configure both realtime and static configuration file lookups for PJSIP then you need to add additional lines to the sorcery config.

For example if you want to read endpoints from both realtime and static configuration:

endpoi nt=real ti me, ps_endpoi nts
endpoi nt =confi g, pj si p. conf, criteri a=type=endpoi nt

You can swap the order to control which data source is read first.

Realtime Configuration

Since we've associated the PJSIP objects with database connector types, we now need to tell Asterisk to use a database backend with the object types,
and not just the flat pjsip.conf file. To do this, we modify the /etc/asterisk/extconfig.conf configuration file to provide these connections.

Open extconfig.conf (/etc/asterisk/extconfig.conf) and add the following lines to the 'settings' configuration section

letc/asterisk/extconfig.conf

[settings]

ps_endpoi nts => odbc, asteri sk
ps_aut hs => odbc, asteri sk

ps_aors => odbc, asteri sk
ps_donmi n_al i ases => odbc, asteri sk
ps_endpoint _id_ips => odbc, asteri sk
ps_contacts => odbc, asteri sk

@ Other tables allowed but not demonstrated in this tutorial: ps_systems, ps_globals, ps_transports, and ps_registrations.

At this point, Asterisk is nearly ready to use the tables created by alembic with PJSIP to configure endpoints, authorization, AORs, domain aliases, and
endpoint identifiers.

@ A warning for adventurous types:
Sorcery.conf allows you to try to configure other PJSIP objects such as transport using realtime and it currently won't stop you from doing so.
However, some of these object types should not be used with realtime and this can lead to errant behavior.

Asterisk Startup Configuration

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 197

Now, we need to configure Asterisk to load its ODBC driver at an early stage of startup, so that it's available when any other modules might need to take
advantage of it. Also, we're going to prevent the old chan_sip channel driver from loading, since we're only worried about PJSIP.

To do this, edit the /etc/asterisk/modules.conf configuration file. In the [modules] section, add the following lines:

letc/asterisk/modules.conf

prel oad => res_odbc. so
preload => res_config_odbc. so
nol oad => chan_si p. so

Asterisk PJSIP configuration
Next, we need to configure a transport in /etc/asterisk/pjsip.conf. PJSIP transport object types are not stored in realtime as unexpected results can
occur. So, edit it and add the following lines:

letc/asterisk/pjsip.conf

[transport-udp]
type=t ransport
pr ot ocol =udp

bi nd=0.0.0.0

Here, we created a transport called transport-udp that we'll reference in the next section.

Endpoint Population

Now, we need to create our endpoints inside of the database. For this example, we'll create two peers, 101 and 102, that register using the totally insecure
passwords "101" and "102" respectively. Here, we'll be populating data directly into the database using the MySQL interactive tool.

nmysql -u root -p -D asterisk;

nysql > insert into ps_aors (id, nax_contacts) values (101, 1);

nysql > insert into ps_aors (id, nax_contacts) values (102, 1);

nysql > insert into ps_auths (id, auth_type, password, usernane) values (101, 'userpass', 101, 101);

nysql > insert into ps_auths (id, auth_type, password, usernanme) values (102, 'userpass', 102, 102);

nysql > insert into ps_endpoints (id, transport, aors, auth, context, disallow allow, direct_nedia) values (101, 'transport-udp',

*101', '101', 'testing', 'all', 'g722', 'no');

nysql > insert into ps_endpoints (id, transport, aors, auth, context, disallow allow, direct_nedia) values (102, 'transport-udp',
'102', '102', 'testing', 'all', 'g722', 'no');

nysql > quit;

In this example, we first created an aor for each peer, one called 101 and the other 102.
Next, we created an auth for each peer with a userpass of 101 and 102, respectively.

Then, we created two endpoints, 101 and 102, each referencing the appropriate auth and aor, we selected the G.722 codec and we forced media to route
inside of Asterisk (not the default behavior of Asterisk).

Now, you can start Asterisk and you can check to see if it's finding your PJSIP endpoints in the database. You can do this by executing "pjsip show
endpoints" from the Asterisk CLI. If everything went well, you'll see:

asterisk -vvvvc

*CLI > pjsip show endpoints
Endpoi nt s:

101

102

*CLI >

A Little Dialplan

Now that we have our PJSIP endpoints stored in our MySQL database, let's add a little dialplan so that they can call each other. To do this, edit Asterisk's /
etc/asterisk/extensions.conf file and add the following lines to the end:

letc/asterisk/extensions.conf

[testing]
exten => _1XX 1, NoOp()
same => n, Di al (PJSI P/ ${ EXTEN})

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 198

Or to dial multiple AOR contacts at the same time, use the PJSIP_DIAL_CONTACTS function:

letc/asterisk/extensions.conf

[testing]
exten => _1XX 1, NoOp()
same => n, Di al (${PISI P_DI AL_CONTACTS(${ EXTEN}) })

Reserved Characters

Realtime uses the semicolon (;) as a delimiter for multiple entries. It must be replaced with "*3B" to prevent the data from being interpreted as multiple
entries.

@ "A3B" is the corresponding byte value of the semicolon character in ASCII, represented as a pair of hexadecimal digits, preceded by a caret (")

acting as the escape character.

For example, this outbound_proxy parameter

si p: 10. 30. 100. 28: 5060; | r

should be stored in the database as

si p: 10. 30. 100. 28: 5060”73BI r

Conclusion

Now, start Asterisk back up, or reload it using core reload from the Asterisk CLI, register your two SIP phones using the 101/101 and 102/102 credentials,
and make a call.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 199

Exchanging Device and Mailbox State Using PJSIP

Background

Asterisk has permitted the exchange of device and mailbox state for many versions. This has normally been accomplished using the res_xmpp module for
instances across networks or using res_corosync for instances on the same network. This has required, in some cases, an extreme amount of work to
setup. In the case of res_xmpp this also adds another point of failure for the exchange in the form of the XMPP server itself. The res_pjsip_publish_asterisk
module on the other hand does not suffer from this.

Operation

The res_pjsip_publish_asterisk module establishes an optionally bidirectional or unidirectional relationship between Asterisk instances. When the device or
mailbox state on one Asterisk changes it is sent to the other Asterisk instance using a PUBLISH message containing an Asterisk specific body. This body is
comprised of JSON and contains the information required to reflect the remote state change. For situations where you may not want to expose all states or
you may not want to allow all states to be received you can optionally filter using a regular expression. This limits the scope of traffic.

Configuration

Configuring things to exchange state requires a few different objects: endpoint, publish, asterisk-publication, and optionally auth. These all configure a
specific part in the exchange. An endpoint must be configured as a fundamental part of PJSIP is that all incoming requests are associated with an
endpoint. A publish object tells the res_pjsip_outbound_publish where to send the PUBLISH and what type of PUBLISH message to send. An
asterisk-publication object configures handling of PUBLISH messages, including whether they are permitted and from whom. Last you can optionally use
authentication so that PUBLISH messages are challenged for credentials.

Example Configuration

The below configuration is for two Asterisk instances sharing all device and mailbox state between them.

Instance #1 (IP Address: 172.16.10.1):

[i nstance?2]
t ype=endpoi nt

[i nstance?2- devi cest at e]

t ype=out bound- publ i sh

server _uri=sip:instancel@?72.16.10.2
event =ast eri sk- devi cest at e

[i nstance2- mni]

t ype=out bound- publ i sh

server _uri=sip:instancel@72.16.10.2
event =ast eri sk- mn

[nstance?]

t ype=i nbound- publ i cati on

event _asteri sk-devi cest at e=i nstance2
event _asteri sk-mi =i nst ance2

[i nstance2]

type=asteri sk-publication

devi cest at e_publ i sh=i nst ance2- devi cestate
mai | boxst at e_publ i sh=i nst ance2- mmi

devi ce_st at e=yes

mai | box_st at e=yes

This configures the first instance to publish device and mailbox state to ‘instance 2' located at 172.16.10.2 using a resource name of 'instancel' without
authentication. As no filters exist all state will be published. It also configures the first instance to accept all device and mailbox state messages published
to a resource named 'instance2' from 'instance2'.

Instance #2 (IP Address: 172.16.10.2):

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 200

[nstancel]
t ype=endpoi nt

[i nstancel- devi cest at e]

t ype=out bound- publ i sh

server _uri =sip:instance2@72.16.10.1
event =ast eri sk-devi cestate

[nstancel- mni]

t ype=out bound- publ i sh

server _uri =sip:instance2@?72.16.10.1
event =ast eri sk- mn

[nstancel]

t ype=i nbound- publ i cation

event _asteri sk-devi cest at e=i nstancel
event _asteri sk- mni =i nst ancel

[nstancel]

type=asteri sk-publication

devi cest at e_publ i sh=i nst ancel-devi cestate
mai | boxst at e_publ i sh=i nst ancel- nw

devi ce_st at e=yes

mai | box_st at e=yes

This configures the second instance to publish device and mailbox state to 'instance 1' located at 172.16.10.1 using a resource name of 'instance2' without
authentication. As no filters exist all state will be published. It also configures the second instance to accept all device and mailbox state messages
published to a resource named 'instancel' from 'instancel'.

Filtering

As previously mentioned state events can be filtered by the device or mailbox they relate to using a regular expression. This is configured on 'publish’ types
using '@device_state_filter' and ‘@mailbox_state_filter' and on 'asterisk-publication’ types using 'device_state_filter' and 'mailbox_state_filter'. As each
event is sent or received the device or mailbox is given to the regular expression and if it does not match the event is stopped.

Example

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 201

[nstancel]
t ype=endpoi nt

[i nstancel- devi cest at e]

t ype=out bound- publ i sh

server _uri =sip:instance2@72.16.10.1
event =ast eri sk-devi cestate

[nstancel- mui]

t ype=out bound- publ i sh

server _uri =sip:instance2@?72.16.10.1
event =ast eri sk- mn

[nstancel]

t ype=i nbound- publ i cation

event _asteri sk-devi cest at e=i nstancel
event _asteri sk- mni =i nst ancel

[nstancel]

type=asteri sk-publication

devi cest at e_publ i sh=i nst ancel-devi cestate
mai | boxst at e_publ i sh=i nst ancel- nm

devi ce_st at e=yes
device_state_filter="PJSI P/

mai | box_st at e=yes

mai | box_state filter=21000

This builds upon the initial configuration for instance #2 but adds filtering of received events. Only device state events relating to PJSIP endpoints will be
accepted. As well only mailbox state events for mailboxes starting with 1000 will be accepted.

1 This configuration is not ideal as the publishing instance (instance #1) will still send state changes for devices and mailboxes that instance #2
does not care about, thus wasting bandwidth.

Fresh Startup

When the res_pjsip_publish_asterisk module is loaded it will send its own current states for all applicable devices and mailboxes to all configured 'publish’
types. Instances may optionally be configured to send a refresh request to 'publish’ types as well by setting the 'devicestate_publish' and/or
'mailboxstate_publish' option in the 'asterisk-publication' type. This refresh request causes the remote instances to send current states for all applicable
devices and mailboxes back, bringing the potentially newly started Asterisk up to date with its peers.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 202

Configuring res_pjsip for Presence Subscriptions

(D Under Construction - This page is a stub!

Capabilities

Asterisk's PJSIP channel driver provides the same presence subscription capabilities as chan_si p does. This means that RFC 3856 presence and RFC
4235 dialog info are supported. Presence subscriptions support RFC 3863 PIDF+XML bodies as well as XPIDF+XML. Beyond that, Asterisk also supports
subscribing to RFC 4662 lists of presence resources.

Configuration

If you are familiar with configuring subscriptions in chan_si p then this should be familiar to you. Configuration of presence is performed using the "hint"
priority for an extension in ext ensi ons. conf .

On this Page

® Capabilities
® Configuration
® Presence Customisations
® Digium Presence
® Rich Presence (limited)

extensions.conf

[defaul t]
exten => 1000, hi nt, PJSI P/ al i ce

The line shown here is similar to any normal line in a dialplan, except that instead of a priority number or label, the word "hint" is specified. The hint is used
to associate the state of individual devices with the state of a dialplan extension. An English translation of the dialplan line would be "Use the state of device
PJSIP/alice as the basis for the state of extension 1000". When PJSIP endpoints subscribe to presence, they are subscribing to the state of an extension in
the dialplan. By providing the dialplan hint, you are creating the necessary association in order to know which device (or devices) are relevant. For the
example given above, this means that if someone subscribes to the state of extension 1000, then they will be told the state of PJSIP/alice. For more
information about device state, see this page.

There are two endpoint options that affect presence subscriptions in pj si p. conf. The al | ow_subscr i be option determines whether SUBSCRIBE
requests from the endpoint are permitted to be received by Asterisk. By default, al | ow_subscri be is enabled. The other setting that affects presence
subscriptions is the cont ext option. This is used to determine the dialplan context in which the extension being subscribed to should be searched for.
Given the dialplan snippet above, if the intent of an endpoint that subscribes to extension 1000 is to subscribe to the hint at 1000@default, then the context
of the subscribing endpoint would need to be set to "default”. Note that if the cont ext option is set to something other than "default”, then Asterisk will
search that context for the hint instead.

In order for presence subscriptions to work properly, some modules need to be loaded. Here is a list of the required modules:

res_pj si p. so: Core of PJSIP code in Asterisk.

res_pj si p_pubsub. so: The code that implements SUBSCRIBE/NOTIFY logic, on which individual event handlers are built.

res_pj si p_ext en_st at e. so: Handles the "presence" and "dialog" events.

res_pj si p_pi df _body_gener at or. so: This module generates application/pidf+xml message bodies. Required for most

subscriptions to the "presence" event.

® res_pjsi p_xpi df _body_gener at or. so: This module generates application/xpidf+xml message bodies. Required for some
subscriptions to the "presence" event.

® res_pjsip_dialog_info_body_generat or. so: Required for subscriptions to the "dialog" event. This module generates

application/dialog-info message bodies.

If you are unsure of what event or what body type your device uses for presence subscriptions, consult the device manufacturer's manual for more
information.

Presence Customisations

Digium Presence

Digium phones are outfitted with a custom supplement to the base PIDF+XML presence format that allows for XMPP-like presence to be understood. To
add this, the hint can be modified to include an additional presence state, like so:

extensions.conf

[defaul t]
exten => 1000, hi nt, PJSI P/ al i ce, Cust onPresence: al i ce

This means that updates to the presence state of CustomPresence:alice will also be conveyed to subscribers to extension 1000. For more information on
presence state in Asterisk, see this page.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 203

http://tools.ietf.org/html/rfc3856
http://www.rfc-editor.org/rfc/rfc4235.txt
http://www.rfc-editor.org/rfc/rfc4235.txt
http://tools.ietf.org/html/rfc3863
http://tools.ietf.org/html/draft-rosenberg-impp-pidf-00
http://tools.ietf.org/html/rfc4662

Theres_pj si p_pi df _di gi um body_suppl enent . so module must be loaded in order for additional presence details to be reported.

Rich Presence (limited)

Some rich presence supplements that were in chan_si p have been migrated to the PJSIP channel driver as well. This is an extremely limited

implementation of the "activities" element of a person. The r es_pj si p_pi df _eyebeam body_suppl enent . so module is required to add this
functionality.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 204

Resource List Subscriptions (RLS)
Overview

Beginning in Asterisk 13, Asterisk supports RFC 4662 resource list subscriptions in its PJSIP-based SIP implementation.

In a PBX environment, it is common for SIP devices to subscribe to many resources offered by the PBX. This holds especially true for presence resources.
Consider a small office where an Asterisk server acts as a PBX for 20 people, each with a SIP desk phone. Each of those 20 phones subscribes to the
state of the others in the office. In this case, each of the phones would create 19 subscriptions (since the phone does not subscribe to its own state). When
totalled, the Asterisk server would maintain 20 * 19 = 380 subscriptions. For an office with 30 people, the total number of subscriptions becomes 30 * 29 =
870 subscriptions. For an office with 40 people, the total number of subscriptions becomes 40 * 39 = 1560. That is about four times the number of
subscriptions for the 20-person office, despite only having twice the number of people. The number of subscriptions follows a geometric progression,
leading to a situation commonly called an N-squared problem. In other words, the amount of traffic generated and amount of server resources required are
proportional to the square of the number of users (N) on the system. The N-squared problem with subscriptions can be a limiting factor for PBX deployers
for several reasons:

® |n a situation where all phones boot up simultaneously, each of the phones will be sending out their SIP SUBSCRIBEs nearly
simultaneously, placing a larger-than-average burden on the Asterisk server's CPU.
® Inthe SIP stack, N-squared long-term SIP dialogs have to be maintained, tying up more system resources (e.g. memory).

On this Page

Overview
Configuring Resource List Subscriptions
Batching Notifications
Corner Cases
® Non-existent List ltems
® Loops
® Ambiguity
® Limitations
® Listsize
® Lack of dynamism

These limitations can drastically limit the number of devices a PBX administrator can use with an Asterisk system. Even if the hardware is capable of
handling the mean traffic of, say, 200 users, it may be required to limit the number of users to 50 or fewer because of the N-squared subscriptions
generating so much simultaneous traffic.

Resource list subscriptions provide relief for this problem by allowing for resources to be grouped into lists. A single subscription to a list will result in

multiple back-end subscriptions to the resources in that list. Notifications of state changes can also be batched so that multiple state changes may be
conveyed in a single message. This can help to significantly decrease the amount of subscription-related traffic and processing being performed.

Configuring Resource List Subscriptions

RLS is configured in pj si p. conf using a special configuration section type called "resource_list". Here is an example of a simple resource list:

pjsip.conf

[sal es]
type = resource_list
event = presence

list_item= alice
list_item= bob
list_item= carol

It should be simple to glean the intent of this list. We have created a list called "sales" that provides the presence of the sales team of alice, bob, and carol.
Let's go over each of the options in more detail.

® type: This must be set to "resource_list" so that the configuration parser knows that it is looking at a resource list.
® event: The SIP event package provided by this resource list. Asterisk, as provided by Digium, provides support for the following event
packages:
® presence: Provides ability to determine when devices are in use or not. Commonly known as BLF.
® dialog: An alternate method of providing BLF. Used by certain SIP equipment instead of the presence event package.
® message-summary: Provides the ability to determine the number of voice mail messages that a mailbox contains. Commonly
known as MWI.
® |ist_item Thisis the name of a resource that belongs to the list. The formatting of list items is dependent on the event package
provided by the list.
® presence: This is the name of an extension in the dialplan. In the example, the extensions "alice”, "bob", and "carol" exist in ext
ensi ons. conf.
® dialog: The same as the presence event package.
® message-summary: This is the name of a mailbox. If you are using app_voi cemni | , then mailboxes will be in the form of
"mailbox@context". If you are using an external voicemail system, then the name of the mailbox will be in whatever format the
external voicemail system uses for mailbox names.
The list items in the example were placed on separate lines, but it is also valid to place multiple list items on a single line: I i st _item =

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 205

al i ce, bob, car ol . Note also that list items can also be other resource lists of the same event type.

There is one further option that is not listed here, but deserves some mention: f ul | _st at e. RFC 4662 defines "full" and "partial” state notifications. When
the states of a subset of resources on a resource list changes, a server has the option of sending a notification that only contains the resources whose
states have changed. This is a partial state notification. A full state notification would include the states of all resources in the list, even if only some of the
resources' states have changed. The f ul | _st at e option allows for full state notifications to be transmitted unconditionally. By default, f ul | _st at e is
disabled on resource list subscriptions in order to keep the size of notifications small. It is highly recommended that you use the default value for this
option unless you are using a client that does not understand partial state notifications.

Batching Notifications

In addition to the basic options listed above, there is another option, noti fi cati on_bat ch_i nt er val that can be used to change Asterisk's behavior
when sending notifications of resource state changes on a list. By default, whenever the state of any resource on a list changes, Asterisk will immediately
send out a notification of the state change. If, however, a noti fi cati on_bat ch_i nt er val is specified, then when a resource state changes, Asterisk
will start a timer for the specified interval. While the timer is running, any further state changes of resources in the list are batched along with the original
state change that started the timer. When the timer expires, then all batched state changes are sent in a single NOTIFY.

Let's modify the previous configuration to use a batching interval:

pjsip.conf

[sal es]

type = resource_li st
event = presence
list_item= alice
list_item= bob
list_item= carol
notification_batch_interval = 2000

The units for the not i fi cati on_bat ch_i nt erval are milliseconds. With this configuration, Asterisk will collect resource state changes for 2000
milliseconds before sending notifications on this resource list.

The biggest advantage of notification batching is that it can decrease the number of NOTIFY requests that Asterisk sends. If two SIP phones on a PBX are
having a conversation with one another, when a call completes, both phones are likely to change states to being not in use. By having a batching interval
configured, it would allow for a single NOTIFY to indicate both devices' state changes instead of having to send two separate NOTIFY requests.

The biggest disadvantage of notification batching is that it becomes possible for transient states for a device to be missed. If you have a batching interval of
3000 milliseconds, and a phone only rings for one second before it is answered, it means that the ringing state of the phone never got transmitted to
interested listeners.

Corner Cases

Non-existent List ltems

Let's say you have the following list configured in pjsip.conf:

pjsip.conf

[sal es]

type = resource_|ist
event = presence
list_item= alice
list_item= bob
list_item= carol

And you have the following in ext ensi ons. conf

extensions.conf

[defaul t]
exten => alice, hint, PJSI P/alice
exten => bob, hint, PJSI P/ bob

Notice that there is no "carol" extension in ext ensi ons. conf . What happens when a user attempts to subscribe to the sales list?

When the subscription arrives, Asterisk recognizes the subscription as being for the list. Asterisk then acts as if it is establishing individual subscriptions to
each of the list items the same way it would if a subscription had arrived directly for the list item. In this case, the subscriptions to alice and bob succeed.
However, the presence subscription handler complains that it cannot subscribe to carol since the resource does not exist.

The policy currently used is that if subscription to at least one list resource succeeds, then the subscription to the entire list has succeeded. Only the list
items that were successfully subscribed to will be reflected in the list subscription. If subscription to all list items fails, then the subscription to the list also
fails.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 206

Loops

Let's say you have the following pjsip.conf file:

pjsip.conf

[sal es]

type = resource_|ist
event = presence
list_item= tech_support

[tech_support]

type = resource_|ist
event = presence
list_item= sales

Notice that the sales list contains the tech_support list, and the tech_support list contains the sales list. We have a loop here. How is that handled?

Asterisk's policy with loops is to try to resolve the issue while being as graceful as possible. The way it does this is that when it detects a loop, it essentially
considers the looped subscription to be a failed list item subscription. The process would go something like this:

. A subscription arrives for the sales list.

. We attempt to subscribe to the tech_support list item in the sales list.

. Inside the tech_support list, we see the sales list as a list item.

. We notice that we've already visited the sales list, so we fail the subscription to the sales list list item.

. Since subscriptions to all list items in the tech support list failed, the subscription to the tech support list failed.

. Since the tech support list was the only list item in the sales list, and that subscription failed, the subscription to the sales list fails as well.

OO WNBE

What if the configured lists were modified slightly:

pjsip.conf

[sal es]

type = resource_|ist
event = presence
list_item= tech_support

[tech_support]

type = resource_list
event = presence
list_item= sales
list_item= alice

Notice that the tech_support list now also has alice as a list_item. How does the process change on a subscription attempt to sales?

. A subscription arrives for the sales list

. We attempt to subscribe to the tech_support list item in the sales list.

. Inside the tech_support list, we see the sales list as a list item.

. We notice that we've already visited the sales list, so we fail the subscription to the sales list list item.

We move on to the next list_item in tech_support, alice.

. We attempt a subscription to alice, and it succeeds.

. Since at least one subscription to a list item in tech_support succeeded, the subscription to tech_support succeeds.
. Since the subscription to the only list item in sales succeeded, the subscription to sales succeeds.

ONOU A WN R

So in this case, even though the configuration contains a loop, Asterisk is able to successfully create a subscription while trimming the loops out.
Ambiguity

Duplicated List Names

If a list name is duplicated, then the configuration framework of Asterisk will not allow for the two to exist as separate entities. It is expected that the most
recent list in the configuration file will overwrite the earlier ones.

While this may seem like an obvious thing, users may be tempted to configure lists that have the same name but that exist for different SIP event
packages. While this may seem like a legitimate configuration, it will not work as intended.

List and Resources with Same Name

One flaw that RLS has is that there is no way to know whether a subscription is intended to be for a list or for an individual resource. Let's say you have the
following pjsip configuration:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 207

pjsip.conf

[sal es]
type = resource_|ist
event = presence

list_item= alice
list_item = bob
list_item= carol

And let's say you have the following ext ensi ons. conf :

extensions.conf

[defaul t]
exten => sal es, hi nt, Cust om sal es

What happens if someone attempts to subscribe to the "sales" presence resource?

One easy way to determine intent is to check the Supported: header in the incoming SUBSCRIBE request. If "eventlist" does not appear, then the
subscriber does not support RLS and is therefore definitely subscribing to the individual sales resource as described in ext ensi ons. conf.

But if the subscriber does support RLS, then Asterisk's policy is to always assume that the subscriber intends to subscribe to the list, not the individual
resource.

Conflicting Batching Intervals

noti fication_batch_interval can be configured on any resource list. Consider the following configuration:

pjsip.conf

[sal es]

type = resource_list

event = presence

list_item= sales_b

list_item= carol

list_item= david
notification_batch_interval = 3000

[sal es_b]

type = resource_list

event = presence

list_item= alice

list_item= bob
notification_batch_interval = 10000

What is the batch interval when a user subscribes to the sales list?

The policy that Asterisk enforces is that only the batch interval of the top-most list in the hierarchy is applied. So in the example above, the batch interval
would be 3000 milliseconds since the top-most list in the hierarchy is the sales list. If the sales list did not have a batch interval configured, then there would
be no batch interval for the list subscription at all.

Limitations

List size

Due to limitations in the PJSIP stack, Asterisk is limited regarding the size of a SIP message that can be transmitted. Asterisk currently works around the
built-in size limitation of PISIP (4000 bytes by default) and can send a message up to 64000 bytes instead. RFC 4662 requires that when sending a
NOTIFY request due to an inbound SUBSCRIBE request, we must send the full state of the resource list in response. For large lists, this may mean that
the NOTIFY will exceed the size limit.

It is difficult to try to quantify the limit in terms of number of list resources since different body types are more verbose than others, and different
configurations will have different variables that will factor into the size of the message (e.g. the length of SIP URIs for one system may be three times as
long as the SIP URIs for a separate system, depending on how things are configured).

If you create a very large list, and you find that Asterisk is unable to send NOTIFY requests due to the size of the list, consider breaking the list into smaller
sub-lists if possible.

Lack of dynamism

Resource lists can be updated as you please, adding and removing list items, altering the batching interval, etc. However, you will find that when a list is
altered, any current subscriptions to the list are not updated to reflect the changes to the list. This is because the list is read from configuration at the time
that the subscription is established, and the configuration is never again consulted during the lifetime of the subscription. If configuration is updated, then
you must terminate your current subscriptions to the list and create a new subscription in order to apply the changes.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 208

Similarly, the state of resources is locked in at the time the subscription is established. For instance, if a list contains a list item that does not exist at the
time the subscription is established, if that resource comes into existence later, then the established subscription is not updated to properly reflect the
added list item. The subscription must be terminated and re-established in order to have the corrected list item included.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 209

Configuring Outbound Registrations

O]

This page is under construction. Please refrain from commenting here until this warning is removed.

Overview

Like with chan_si p, Asterisk's PJSIP implementation allows for configuration of outbound registrations. Unlike chan_si p, it is not implemented in an
obnoxious way. Like with most concepts in PJSIP configuration, outbound registrations are confined to a configuration section of their own.

Confi

guration options

A list of outbound registration configuration options can be found on this page. Here is a simple example configuration for an outbound registration to a
provider:

On this Page

Overview
Configuration options
Outbound registrations and endpoints
Authentication
Dealing with Failure
® Temporary and Permanent Failures

¢ CLl and AMI

® Monitoring Status

® Manually Unregistering
® Realtime

pjsip.conf

[my_provider]
type = registration

server_uri = sip:registrar@xanpl e.com
client_uri = sip:client@xanple.com
contact _user = inbound-calls

This results in the following outbound REGISTER request being sent by Asterisk:

<--- Transnmitting SIP request (557 bytes) to UDP:93.184.216.119: 5060 --->

REG STER si p: regi strar @xanpl e.com SIP/ 2.0

Via: SIP/2.0/UDP 10. 24. 20. 249: 5060; r por t ; br anch=z9hG4bKPj d1a32b43- 82ed- 4f 98- ae24- 20149cdf 0749
From <sip:client@xanpl e. con>; t ag=904e0db9- 8297- 4bb0- 89c5- 5¢f elcf ed654

To: <sip:client@xanple.con>

Cal | -1 D 03241f 7b- 3936- 4140- 8bad- 6840774b78d9

CSeq: 10266 REG STER

Contact: <sip:inbound-calls@0. 24. 20. 249: 5060>

Expires: 3600

Al'low OPTIONS, SUBSCRIBE, NOTIFY, PUBLISH, |INVITE ACK, BYE, CANCEL, UPDATE, PRACK, MESSAGE, REFER, REG STER
Max- Forwar ds: 70

Content-Length: 0

Let's go over how the options were applied to this REGISTER:

The server _uri is the actual URI where the registrar is located. If you are registering with a SIP provider, they should give this
information to you.

The client _uri isused inthe To and From headers of the REGISTER. In other words, this is the address of record to which you are
binding a contact URI. If registering to a SIP provider, they may require you to provide a specific username in order to identify that the
REGISTER is coming from you. Note that the domain of the cl i ent _uri is the same as the server URI. This is common when
indicating that the registrar receiving the REGISTER is responsible for the URI being registered to it.

The cont act _user option can be seen in the user portion of the URI in the Contact header. This allows for you to control where
incoming calls from the provider will be routed. Calls from the provider will arrive in this extension in the dialplan. Note that this option
does not relate to endpoint-related options. For information on relating outbound registrations and endpoints, see the following section.

An English translation of the above REGISTER is "Tell the server at sip:registrar@example.com that when SIP traffic arrives addressed to
sip:client@example.com, the traffic should be sent to sip:inbound-calls@10.24.20.249." Note in this example that 10.24.20.249 is the IP address of the
Asterisk server that sent the outbound REGISTER request.

©

Content is

The transport type, e.g. tcp, for the registration can be specified by appending the details to the client_uri and/or server_uri parameters, e.g.:

licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 210

https://wiki/display/AST/Asterisk+13+Configuration_res_pjsip_outbound_registration

[my_provider]
type = registration

server_uri = sip:registrar@xanpl e.com ;transport=tcp
client_uri = sip:client@xanple.con;transport=tcp
contact _user = inbound-calls

Outbound registrations and endpoints

If you examine the configuration options linked in the previous section, you will notice that there is nothing that ties an outbound registration to an endpoint.
The two are considered completely separate from each other, as far as Asterisk is concerned. However, it is likely that if you are registering to an ITSP, you
will want to receive incoming calls from that provider. This means that you will need to set up an endpoint that represents this provider. An example of such
an endpoint configuration can be found here, but it is a bit complex. Let's instead make a simpler one just for the sake of explanation. Assuming the

previous registration has been configured, we can add the following:

pjsip.conf

[my_provi der _endpoi nt]
type = endpoi nt

[my_provider_identify]

type = identify

match = <ip address of provider>
endpoi nt = ny_provider

This represents the bare minimum necessary in order to accept incoming calls from the provider. The i dent i f y section makes it so that incoming SIP

traffic from the IP address in the mat ch option will be associated with the endpoint called my_pr ovi der _endpoi nt .

If you also wish to make outbound calls to the provider, then you would also need to add an AoR section so that Asterisk can know where to send calls

directed to "my_provider_endpoint”.

pjsip.conf

[my_provi der _endpoi nt]
type = endpoint
aors = ny_provider_aor

[my_provider_identify]

type = identify

match = <ip address of provider>
endpoi nt = ny_provider

[ny_provi der _aor]
type = aor
contact = sip:ny_provider @xanpl e. com

codecs, authentication, etc. on the endpoint.

(D Let me reiterate that this is the bare minimum. If you want calls to and from the provider to actually work correctly, you will want to set a context,

Authentication

It is likely that if you are registering to a provider, you will need to provide authentication credentials. Authentication for outbound registrations is configured

much the same as it is for endpoints. The out bound_aut h option allows for you to pointto atype = aut h section in your configuration to refer to when

a registrar challenges Asterisk for authentication. Let's modify our configuration to deal with this:

pjsip.conf

[my_provider]
type = registration

server_uri = sip:registrar@xanpl e.com
client_uri = sip:client@xanple.com
contact_user = inbound-calls

out bound_auth = provider_auth

[provi der _aut h]

type = auth

username = my_user name
passwor d ny_passwor d

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

211

https://wiki.asterisk.org/wiki/display/AST/res_pjsip+Configuration+Examples#res_pjsipConfigurationExamples-ASIPtrunktoyourserviceprovider,includingoutboundregistration

With this configuration, now if the registrar responds to a REGISTER by challenging for authentication, Asterisk will use the authentication credentials in the
provider_auth section in order to authenticate. Details about what options are available in auth sections can be found here in the "auth" section.

Dealing with Failure

Temporary and Permanent Failures

Whenever Asterisk sends an outbound registration and receives some sort of failure response from the registrar, Asterisk makes a determination about
whether a response can be seen as a permanent or temporary failure. The following responses are always seen as temporary failures:

No Response

408 Request Timeout
500 Internal Server Error
502 Bad Gateway

503 Service Unavailable
504 Server Timeout

Any 600-class response

In addition, there is an option called aut h_r ej ect i on_per nanent that can be used to determine if authentication-related rejections from a registrar are
treated as permanent or temporary failures. By default, this option is enabled, but disabling the setting means the following two responses are also treated
as temporary failures:

® 401 Unauthorized
® 407 Proxy Authentication Required

What is meant by temporary and permanent failures? When a temporary failure occurs, Asterisk may re-attempt registeringifaretry_i nterval is
configured in the outbound registration. The ret ry_i nt er val is the number of seconds Asterisk will wait before attempting to send another REGISTER
request to the registrar. By default, outbound registrations have aretry_i nt er val of 60 seconds. Another configuration option, max_retri es,
determines how many times Asterisk will attempt to re-attempt registration before permanently giving up. By default, max_r et ri es is set to 10.

Permanent failures result in Asterisk immediately ceasing to re-attempt the outbound registration. All responses that were not previously listed as temporary
failures are considered to be permanent failures. There is one exception when it comes to permanent failures. The f or bi dden_retry_i nterval can be

set such that if Asterisk receives a 403 Forbidden response from a registrar, Asterisk can wait the number of seconds indicated and re-attempt registration.

Retries that are attempted in this manner count towards the same max_r et ri es value as temporary failure retries.

Let's modify our outbound registration to set these options to custom values:

pjsip.conf

[my_provider]
type = registration

server_uri = sip:registrar@xanpl e.com
client_uri = sip:client@xanple.com
contact _user = inbound-calls

out bound_auth = provider_auth
aut h_rej ecti on_permanent = no
retry_interval = 30
forbidden_retry_interval = 300
max_retries = 20

In general, this configuration is more lenient than the default. We will retry registration more times, we will retry after authentication requests and forbidden
responses, and we will retry more often.

CLI and AMI

Monitoring Status

You can monitor the status of your configured outbound registrations via the CLI and the Asterisk Manager
Interface. From the CLI, you can issue the command pj si p show regi strati ons to list all outbound
registrations. Here is an example of what you might see:

<Registration/ServerURl.........iiiiuo .. > <Auth.......... > <Status....... >
ny_provi der/sip:registrar@xanpl e.com provider_auth Unregi stered
outreg/ si p: regi strar @xanpl e. com n/a Unr egi stered

On this particular Asterisk instance, there are two outbound registrations configured. The headers at the top explain what is in each column. The "Status"
can be one of the following values:

® Unregistered: Asterisk is currently not registered. This is most commonly seen when the registration has not yet been established. This
can also be seen when the registration has been forcibly unregistered or if the registration times out.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 212

https://wiki/display/AST/Asterisk+13+Configuration_res_pjsip

® Registered: Asterisk has successfully registered.
® Rejected: Asterisk attempted to register but a failure occurred. See the above section for more information on failures that may occur.
® Stopped: The outbound registration has been removed from configuration, and Asterisk is attempting to unregister.

In addition, you can see the details of a particular registration by issuing the pj si p show regi strati on <regi strati on name>command. If | issue
pj sip show regi stration ny_provider, | see the following:

<Registration/ServerURl iiiuinn. > <Auth.......... > <Status....... >
ny_provider/sip:registrar@xanpl e.com provider _auth Unregi stered
Par amet er Nane : Paranet er Val ue

auth_rejection_permanent : false

client_uri : sip:client@xanple.com
contact _user : inbound-calls
expiration : 3600
forbidden_retry_interval : 300

max_retries : 20

out bound_aut h : provider_auth

out bound_pr oxy :

retry_interval : 30

server_uri : sip:registrar@xanpl e.com
support_path : false

transport :

This provides the same status line as before and also provides the configured values for the outbound registration.

AMI provides the PJSI PShowRegi st r at i onsQut bound command that provides the same information as the CLI commands. Here is an example of
executing the command in an AMI session:

action: PJSI PShowRegi strati onsCut bound

Response: Success
EventList: start
Message: Following are Events for each Qutbound registration

Event: QutboundRegi strationDetai l
bj ect Type: registration

Obj ect Narme: ny_provi der

Support Path: fal se

Aut hRej ecti onPer manent: fal se
ServerUri: sip:registrar@xanple.com
ClientUri: sip:client@xanple.com
Retrylnterval: 30

MaxRetries: 20

Qut boundPr oxy:

Transport:

For bi ddenRetryl nterval : 300

Qut boundAut h: provi der_auth

Cont act User: inbound-calls
Expiration: 3600

Status: Rejected

Next Reg: 0O

Event: QutboundRegi strationDetail
Obj ect Type: registration

bj ect Nane: outreg

SupportPath: false

Aut hRej ecti onPer nanent: true
ServerUri: sip:registrar@xanpl e.com
CientUi: sip:client@xanple.com
Retrylnterval : 60

MaxRetries: 10

Qut boundPr oxy:

Transport:

For bi ddenRetrylnterval : 0

Qut boundAut h:

Cont act User: inbound-calls
Expiration: 3600

Status: Rejected

Next Reg: 0

Event: QutboundRegi strationDetail Conpl ete
Event Li st: Conplete

Regi stered: 0

Not Regi stered: 2

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 213

The command sends Qut boundRegi st rati onDet ai | events for each configured outbound registration. Most information is the same as the CLI
displays, but there is one additional piece of data displayed: NextReg. This is the number of seconds until Asterisk will send a new REGISTER request to
the registrar. In this particular scenario, that number is 0 because the two outbound registrations have reached their maximum number of retries.

Manually Unregistering

The AMI and CLI provide ways for you to manually unregister if you want. The CLI provides the pj si p send unregi ster <regi stration name>co
mmand. AMI provides the PJSI PUnr egi st er command to do the same thing.

1 After manually unregistering, the specified outbound registration will continue to reregister based on its last registration expiration.

Realtime

At the time of this wiki article writing, it is not possible, nor would it be recommended, to use dynamic realtime for outbound registrations. The code inres_
pj si p_out bound_r egi strati on. so, the module that allows outbound registrations to occur, does not attempt to look outside of pj si p. conf for
details regarding outbound registrations. This is done because outbound registrations are composed both of the configuration values as well as state (e.g.
how many retries have we attempted for an outbound registration). When pulling configuration from a file, a reload is necessary, which makes it easy to
have a safe place to transfer state information or alter configuration values when told that things have changed. With dynamic realtime, this is much harder
to manage since presumably the configuration could change at any point.

If you prefer to use a database to store your configuration, you are free to use static realtime for outbound registrations instead. Like with a configuration
file, you will be forced to reload (from the CLI, nodul e rel oad res_pj si p_out bound_r egi strati on. so) in order to apply configuration changes.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 214

Asterisk PJSIP Troubleshooting Guide

(D This page is currently under construction. Please refrain from commenting until this warning is removed.

Overview

Are you having problems getting your PJSIP setup working properly? If you are encountering a common problem then hopefully your answer can be found
on this page.

Before looking any further here, you should make sure that you have gathered enough information from Asterisk to know what your issue is. It is suggested
that you perform the following actions at the Asterisk CLI:

® core set verbose 4
® core set debug 4
® pjsip set |ogger on

With these options enabled, this will allow you to more easily see what is going on behind the scenes in your failing scenario. It also can help you to
cross-reference entries on this page since several debug, warning, and error messages will be quoted here.

Inbound Calls

Unrecognized Endpoint

All inbound SIP traffic to Asterisk must be matched to a configured endpoint. If Asterisk is unable to determine which endpoint the SIP request is coming
from, then the incoming request will be rejected. If you are seeing messages like:

On this Page

® Overview
® Inbound Calls
® Unrecognized Endpoint
® Authentication is failing
® Authentication Not Attempted
® Asterisk cannot find the specified extension
®* ARGH! NAT!
® Outbound Calls
® Asterisk says my endpoint does not exist
® Asterisk cannot route my call
® ARGH! NAT! (Part 2)
® Bridged Calls
® Direct media is not being used
® Inbound Registrations
® OQutbound Registrations
® Inbound Subscriptions
® Presence/Dialog Info
°* MWwWI
® Configuration Issues
® Can't create an IPv6 transport

[2014- 10-13 16:12: 17. 349] DEBUJ 27284]: res_pj si p_endpoint_identifier_user.c:106 usernane_identify: Could not identify endpoint
by username ' eggowaffles’

or

[2014-10- 13 16:13:07.201] DEBUJ 27507]: res_pjsip_endpoint_identifier_ip.c:113 ip_identify_match_check: Source address
127.0.0.1: 5061 does not match identify 'david-ident'

then this is a good indication that the request is being rejected because Asterisk cannot determine which endpoint the incoming request is coming from.

How does Asterisk determine which endpoint a request is coming from? Asterisk uses something called "endpoint identifiers" to determine this. There are
three endpoint identifiers bundled with Asterisk: user, ip, and anonymous.

Identify by User
The user endpoint identifier is provided by the r es_pj si p_endpoi nt _i denti fi er _user. so module. If nothing has been explicitly configured with

regards to endpoint identification, this endpoint identifier is the one being used. The way it works is to use the user portion of the From header from the
incoming SIP request to determine which endpoint the request comes from. Here is an example INVITE:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 215

<--- Received SIP request (541 bytes) from UDP:127.0.0.1:5061 --->
I NVI TE si p: servi ce@?27.0.0.1:5060 SIP/2.0

Via: SIP/2.0/UDP 127.0.0. 1: 5061; br anch=z9hG4bK- 27600- 1- 0

From breakfast <sip:eggowaffles@?27.0.0.1:5061>;tag=27600SI PpTag001
To: sut <sip:service@?27.0.0.1>

Call-1D 1-27600@27.0.0.1

CSeq: 1 INVITE

Contact: sip:eggowaffles@?27.0.0.1:5061

Max- Forwar ds: 70

Cont ent - Type: application/sdp

Cont ent - Lengt h: 163

v=0

o=user 1l 53655765 2353687637 IN I P4 127.0.0.1
S=-

c=INIP4 127.0.0.1

t=0 0

nraudi o 6000 RTP/ AVP 0

a=rt pmap: 8 PCMA/ 8000

a=rtpmap: 0 PCMJ 8000

a=ptime: 20

In this example, the URI in the From header is "sip:eggowaffles@127.0.0.1:5061". The user portion is "eggowaffles", so Asterisk attempts to look up an
endpoint called "eggowaffles" in its configuration. If such an endpoint is not configured, then the INVITE is rejected by Asterisk. The most common cause of
the problem is that the user name referenced in the From header is not the name of a configured endpoint in Asterisk.

But what if you have configured an endpoint called "eggowaffles"? It is possible that there was an error in your configuration, such as an option name that
Asterisk does not recognize. If this is the case, then the endpoint may not have been loaded at all. Here are some troubleshooting steps to see if this might
be the case:

® From the CLI, issue the "pjsip show endpoints” command. If the endpoint in question does not show up, then there likely was a problem
attempting to load the endpoint on startup.

® Go through the logs from Asterisk startup. You may find that there was an error reported that got lost in the rest of the startup messages. For
instance, be on the lookout for messages like:

[2014-10- 13 16:25: 01. 674] ERROR[{ 27771] : config_options.c: 710 aco_process_var: Could not find option suitable for category
' eggowaf fl es' named 'setvar' at |ine 390 of

[2014- 10- 13 16:25: 01. 674] ERROR[27771]: res_sorcery_config.c: 275 sorcery_config_internal _| oad: Could not create an object
of type "endpoint' with id 'eggowaffles' fromconfiguration file 'pjsip.conf’

In this case, | set an endpoint option called "setvar" instead of the appropriate "set_var". The result was that the endpoint was not loaded.

® |f you do not see such error messages in the logs, but you do not see the endpoint listed in "pjsip show endpoints"”, it may be that you
forgot to putt ype = endpoi nt in your endpoint section. In this case, the entire section would be ignored since Asterisk did not know
that this was an endpoint section.

Identify by IP address

Asterisk can also recognize endpoints based on the source IP address of the SIP request. This requires settingup atype = identify section in your
configuration to match IP addresses or networks to a specific endpoint. Here are some troubleshooting steps:

® Ensurethatres_pj si p_endpoi nt _i dentifier_ip.soisloaded and running. From the CLI, run nodul e show I i ke
res_pj si p_endpoi nt _identifier_ip.so. The output should look like the following:

Modul e Description Use Count Status Support Level
res_pj sip_endpoint _identifier_ip.so PISIP | P endpoint identifier 0 Runni ng core

® Run the troubleshooting steps from the Identify by User section to ensure that the endpoint you have configured has actually been
properly loaded.

® From the Asterisk CLI, run the command pj si p show endpoi nt <endpoi nt nane>. Below the headers at the top of the output, you should
see something like the following:

Endpoi nt: davi d/ 6001 Unavailable 0 of inf
I nAut h: davi d- aut h/ davi d
Aor: david 10
Transport: main-transport udp 0 0 0.0.0.0:5060
Identify: 10.24.16.36/32

Notice the bottom line. This states that the endpoint is matched based on the IP address 10.24.16.36. If you do not see such a line for the
endpoint that you expect to be matched, then there is likely a configuration error. If the line does appear, then ensure that the IP address listed
matches what you expect for the endpoint.

® |f you are noticing that Asterisk is matching the incorrect endpoint by IP address, ensure that there are no conflicts in your configuration. Run the p
j sip show endpoi nt s command and look for issues such as the following:

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 216

Endpoi nt: carol /6000 Unavailable 0 of inf
I nAuth: carol -auth/carol
Aor: carol 10
Transport: nmain-transport udp 0 0 0.0.0.0:5060
Identify: 10.0.0.0/8

Endpoi nt: davi d/ 6001 Unavailable 0 of inf
I nAut h: davi d- aut h/ davi d
Aor: david 10
Transport: nmain-transport udp 0 0 0.0.0.0:5060

Identify: 10.24.16.36/32

Notice that if a SIP request arrives from 10.24.16.36, it is ambiguous if the request should be matched to carol or david.

If you run pj si p show endpoi nt <endpoi nt nanme> and do not see an "ldentify" line listed, then there is likely a configuration issue somewhere. Here
are some common pitfalls

® Ensure that your identify section has t ype = i denti fy init. Without this, Asterisk will completely ignore the configuration section.
® Ensure that your identify section has an endpoi nt option set in it and that the endpoint is spelled correctly.
® Double-check your mat ch lines for common errors:
® You cannot use FQDNs or hostnames. You must use IP addresses.
® Ensure that you do not have an invalid netmask (e.g. 10.9.3.4/255.255.255.300, 127.0.0.1/33).
® Ensure that you have not mixed up /0 and /32 when using CIDR notation.
® |f you are using a configuration method other than a config file, ensure that sor cery. conf is configured correctly. Since identify sections are not
provided by the base r es_pj si p. so module, you must ensure that the configuration resides in the r es_pj si p_endpoi nt _identifier_ips
ection of sor cery. conf . For example, if you are using dynamic realtime, you might have the following configuration:

sorcery.conf

[res_pjsip_endpoint _identifier_ip]
identify = realtinme, ps_endpoint_id_ips

And then you would need the corresponding config in ext confi g. conf:

extconfig.conf

[settings]
ps_endpoi nt _i d_i ps => odbc

Anonymous ldentification

Anonymous endpoint identification allows for a specially-named endpoint called "anonymous" to be matched if other endpoint identifiers are not able to
determine which endpoint a request originates from. The r es_pj si p_endpoi nt _i denti fi er _anonynous. so module is responsible for matching the
incoming request to the anonymous endpoint. If SIP traffic that you expect to be matched to the anonymous endpoint is being rejected, try the following
troubleshooting steps:

® Ensure thatres_pj si p_endpoi nt _i denti fi er _anonynous. so is loaded and running. From the Asterisk CLI, run nrodul e show | i ke
res_pj si p_endpoi nt _i dentifi er_anonynous. so. The output should look like the following:

Modul e Description Use Count Status Support Level
res_pj si p_endpoi nt _i dentifier_anonynous. so PJSI P Anonynous endpoint identifier 0 Runni ng core

® Ensure that the "anonymous" endpoint has been properly loaded. See the troubleshooting steps in the Identify by User section for more
details about how to determine if an endpoint has been loaded.

Authentication is failing

The first thing you should check if you believe that authentication is failing is to ensure that this is the actual problem. Consider the following SIP call from
endpoint 200 to Asterisk:

<--- Received SIP request (1053 bytes) from UDP: 10.24.16.37: 5060 --->

I NVI TE si p: 201@L0. 24. 20. 249 SIP/ 2.0

Via: SIP/2.0/UDP 10.24.16. 37: 5060; r port; branch=z9hG4bKPj Qevr xvXqk9Lk5x SW pz QQb8SAWIIS5LI |
Max- Forwar ds: 70

From "200" <sip:200@L0. 24. 20. 249>; t ag=DTD- t YEWFMYbPyuOYWal LQdbEUGSLGNS

To: <sip:201@0. 24. 20. 249>

Contact: "200" <sip:200@L0. 24. 16. 37: 5060; ob>

Cal | -1 D g. TF2SAaX3j n8dt aLTOCul OBFRyDCs SR

CSeq: 9775 INVITE

Allow PRACK, INVITE, ACK, BYE, CANCEL, UPDATE, SUBSCRI BE, NOTIFY, REFER, MESSAGE, OPTI ONS
Supported: replaces, 100rel, tinmer, norefersub

Sessi on- Expi res: 1800

M n-SE: 90

User- Agent: Digium D40 1_4_0_0_57389

Cont ent - Type: application/sdp

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 217

Cont ent - Lengt h: 430

v=0

o=- 108683760 108683760 | N | P4 10.24.16.37
s=di gphn

c=I N I P4 10.24.16. 37

t=0 0

a=X-nat:0

mraudi o 4046 RTP/AVP 0 8 9 111 18 58 118 58 96
a=rtcp: 4047 IN | P4 10.24.16. 37

a=rt prmap: 0 PCMJ 8000

a=rtpmap: 8 PCMA 8000

a=rtpmap: 9 Gr22/ 8000

a=rtpmap: 111 G726- 32/ 8000

a=rt pmap: 18 G729/ 8000

a=rtpmap: 58 L16/ 16000

a=rtpmap: 118 L16/ 8000

a=rtpmap: 58 L16-256/ 16000

a=sendr ecv

a=rtpmap: 96 tel ephone-event/ 8000

a=fntp: 96 0-15

<--- Transmitting SIP response (543 bytes) to UDP: 10.24.16.37:5060 --->

SI P/ 2.0 401 Unaut hori zed

Via: SIP/2.0/UDP 10.24.16. 37: 5060; rport;recei ved=10. 24. 16. 37; br anch=z9h&4bKPj Qevr xvXgk9Lk5x SW pz QQb8SAWII5LI |

Cal | -1 D . TF2SAaX3j n8dt aLTOCul OBFRyDCsSR

From "200" <sip:200@L0. 24. 20. 249>; t ag=DTD- t YEWFMYbPyuOYWal LQdbEUGSLGNS

To: <sip:201@0. 24. 20. 249>; t ag=z9hGAbKPj Qevr xvXqk9Lk5x SW pz QQb8SAWNIS5LI |

CSeq: 9775 INVITE

WAW Aut henti cate: Di gest

real m"ast eri sk", nonce="1413305427/ 8dd1b7f 56aba97da45754f 7052d8a688", opaque="3b9c806bh61adf 911", al gori t hm=nd5, qop="aut h"
Content-Length: 0

<--- Received SIP request (370 bytes) from UDP:10.24.16.37: 5060 --->

ACK si p: 201@L0. 24. 20. 249 SIP/ 2.0

Via: SIP/2.0/UDP 10.24.16. 37: 5060; rport; branch=z9h&4bKPj Qevr xvXgk9Lk5x SW pz QQb8SAWIIS5LI |
Max- Forwar ds: 70

From "200" <sip:200@L0. 24. 20. 249>; t ag=DTD- t YEWFMYbPyuOYWal LQdbEUGSLGNS

To: <sip:201@0. 24. 20. 249>; t ag=z9hGAbKPj Qevr xvXqk9Lk5x SW pz QQb8SAWNIS5LI |

Cal | -1 D . TF2SAaX3j n8dt aLTOCul OBFRyDCsSR

CSeq: 9775 ACK

Content-Length: O

<--- Received SIP request (1343 bytes) from UDP: 10. 24. 16. 37: 5060 --->

I NVI TE si p: 201@L0. 24. 20. 249 SIP/ 2.0

Via: SIP/2.0/UDP 10. 24. 16. 37: 5060; r por t ; br anch=z9h&4bKPj Cr Znx79augJPt GcThY! XEs2s| ZNt wyeC
Max- Forwar ds: 70

From "200" <sip:200@L0. 24. 20. 249>; t ag=DTD- t YEwFMrbPyuOYWal LQdbEUGSLGNS

To: <sip:201@0. 24. 20. 249>

Contact: "200" <sip:200@l0. 24. 16. 37: 5060; ob>

Cal | -1 D g. TF2SAaX3j n8dt aLTOCul GBFRy DCs SR

CSeq: 9776 INVITE

Al ow. PRACK, INVITE, ACK, BYE, CANCEL, UPDATE, SUBSCRI BE, NOTIFY, REFER, MESSAGE, OPTI ONS
Supported: replaces, 100rel, tiner, norefersub

Sessi on- Expi res: 1800

M n-SE: 90

User- Agent: Digium D40 1_4_0_0_57389

Aut hori zation: Digest username="200", real m="asterisk", nonce="1413305427/8dd1b7f56aba97da45754f 7052d8a688",
uri="sip:201@0. 24. 20. 249", response="2da759314909af 8507a59cd1b6bcObaa", al gorithmend5,
cnonce="-ne-qgsYc. r QU | 5A6n- Dy8l hCBg9wKe8", opaque="3b9c806b6ladf 911", qop=auth, nc=00000001
Cont ent - Type: application/sdp

Cont ent - Lengt h: 430

v=0

o=- 108683760 108683760 I N | P4 10.24.16.37
s=di gphn

c=I N I P4 10.24.16. 37

t=0 0

a=X-nat: 0

mraudi o 4046 RTP/AVP 0 8 9 111 18 58 118 58 96
a=rtcp: 4047 IN I P4 10.24.16. 37

a=rt prmap: 0 PCMJ 8000

a=rtpmap: 8 PCMA 8000

a=rtpmap: 9 Gr22/ 8000

a=rtpmap: 111 G726- 32/ 8000

a=rt prmap: 18 G729/ 8000

a=rtpmap: 58 L16/ 16000

a=rtpmap: 118 L16/ 8000

a=rtpmap: 58 L16-256/ 16000

a=sendr ecv

a=rtpmap: 96 tel ephone-event/ 8000

a=fntp: 96 0-15

<--- Transmitting SIP response (543 bytes) to UDP: 10.24.16.37:5060 --->
SI P/ 2.0 401 Unaut hori zed

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

218

Via: SIP/2.0/UDP 10. 24. 16. 37: 5060; r port ; r ecei ved=10. 24. 16. 37; br anch=z9hG4bKPj Cr Znx79augJPt GcTbYl XEs2s| ZNt wyeC

Cal | -1 D . TF2SAaX3j n8dt aLTOCul OBFRyDCsSR

From "200" <sip:200@L0. 24. 20. 249>; t ag=DTD- t YEwFMrbPyuOYWal LQdbEUGSLGNS

To: <sip:201@0. 24. 20. 249>; t ag=z9hGAbKPj Cr Znx79augJPt GcThYl XEs2s| ZNt wyeC

CSeq: 9776 INVITE

WAN Aut henti cate: Di gest

real me"ast eri sk, nonce="1413305427/ 8dd1b7f 56aba97da45754f 7052d8a688", opaque="0b5a53ab6484480a", al gori t hmend5, qop="aut h"
Content-Length: O

<--- Received SIP request (370 bytes) from UDP: 10. 24. 16. 37: 5060 --->

ACK sip:201@L0. 24. 20.249 SIP/2.0

Via: SIP/2.0/UDP 10. 24. 16. 37: 5060; r por t ; br anch=z9h&4bKPj Cr Znx79augJPt CcThY! XEs2s| ZNt wyeC
Max- Forwar ds: 70

From "200" <sip:200@L0. 24. 20. 249>; t ag=DTD- t YEwFMrbPyuOYWal LQdbEUGSLGNS

To: <sip:201@L0. 24. 20. 249>; t ag=z9hGAbKPj Cr Znx79augJPt GcThYl XEs2s| ZNt wyeC

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 219

Cal | -1 D . TF2SAaX3j n8dt aLTOCul OBFRyDCsSR
CSeq: 9776 ACK
Content-Length: 0

At first glance, it would appear that the incoming call was challenged for authentication, and that 200 then failed to authenticate on the second INVITE sent.
The actual problem here is that the endpoint 200 does not exist within Asterisk. Whenever a SIP request arrives and Asterisk cannot match the request to a
configured endpoint, Asterisk will respond to the request with a 401 Unauthorized response. The response will contain a WWW-Authenticate header to
make it look as though Asterisk is requesting authentication. Since no endpoint was actually matched, the authentication challenge created by Asterisk is
just dummy information and is actually impossible to authenticate against.

The reason this is done is to prevent an information leak. Consider an attacker that sends SIP INVITEs to an Asterisk box, each from a different user. If the
attacker happens to send a SIP INVITE from a user name that matches an actual endpoint on the system, then Asterisk will respond to that INVITE with an
authentication challenge using that endpoint's authentication credentials. But what happens if the attacker sends a SIP INVITE from a user name that does
not match an endpoint on the system? If Asterisk responds differently, then Asterisk has leaked information by responding differently. If Asterisk sends a
response that looks the same, though, then the attacker is unable to easily determine what user names are valid for the Asterisk system.

So if you are seeing what appears to be authentication problems, the first thing you should do is to read the Unrecognized Endpoint section above and
ensure that the endpoint you think the SIP request is coming from is actually configured properly. If it turns out that the endpoint is configured properly, here
are some trouble-shooting steps to ensure that authentication is working as intended:

® Ensure that username and password in the t ype = aut h section are spelled correctly and that they are using the correct case. If you
have "Alice" as the username on your phone and "alice" as the username in Asterisk, things will go poorly.

® |f you are using the md5_cr ed option in an auth section, ensure the following:

Ensure that you have set aut h_t ype = nd5.

Ensure that the calculated MD5 sum is composed of username:realm:password

Ensure that the calculated MD5 sum did not contain any extraneous whitespace, such as a newline character at the end.

Ensure there were no copy-paste errors. An MD5 sum is exactly 32 hexadecimal characters. If the option in your config file

contains fewer or greater than 32 characters, or if any of the characters are not hexadecimal characters, then the MD5 sum is

invalid.

® Ensure that you have specified a user nane. Asterisk does not imply a username based on the name of the auth section.

® Ensure that the configured r eal mis acceptable. In most cases, simple SIP devices like phones will authenticate to whatever realm is
presented to them, so you do not need to configure one explicitly. However, if a specific realm is required, be sure it is configured. Be
sure that if you are using the nd5_cr ed option that this realm name is used in the calculation of the MD5 sum.

® Ensure that the endpoint that is communicating with Asterisk uses the "Digest" method of authentication and the "md5" algorithm. If they
use something else, then Asterisk will not understand and reject the authentication attempt.

Authentication Not Attempted

The opposite problem of authentication failures is that incoming calls are not being challenged for authentication where it would be expected. Asterisk
chooses to challenge for authentication if the endpoint from which the request arrives has a configured aut h option on it. From the CLI, run the pj si p
show endpoi nt <endpoi nt name> command. Below the initial headers should be something like the following:

Endpoint: david/ 6001 Unavai | abl e 0 of inf
I nAuth: davi d- aut h/ davi d
Aor: david 10
Transport: main-transport udp 0 0 0.0.0.0:5060
Identify: 10.24.16.36/32

Notice the "InAuth” on the second line of output. This shows that the endpoint's auth is pointing to a configuration section called "david-auth" and that the
auth section has a username of "david". If you do not see an "InAuth” specified for the endpoint, then this means that Asterisk does not see that the
endpoint is configured for authentication. Check the following:

® Ensure that there is an aut h line in your endpoint's configuration.
® Ensure that the auth that your endpoint is pointing to actually exists. Spelling is important.
® Ensure that the auth that your endpoint is pointing to has t ype = aut h specified in it.

Asterisk cannot find the specified extension

If you are seeing a message like the following on your CLI when you place an incoming call:

[2014- 10- 14 13: 22:45.886] NOTI CE[1583] : res_pj si p_session.c:1538 new_invite: Call from'201" (UDP:10.24.18.87:5060) to extension
' 456789 rejected because extension not found in context 'default'.

then it means that Asterisk was not able to direct the incoming call to an appropriate extension in the dialplan. In the case above, | dialled "456789" on the
phone that corresponds with endpoint 201. Endpoint 201 is configured with cont ext = def aul t and the "default" context in my dialplan does not have
an extension "456789".

The NOTICE message can be helpful in this case, since it tells what endpoint the call is from, what extension it is looking for, and in what context it is
searching. Here are some helpful tips to be sure that calls are being directed where you expect:

® Be sure that the endpoint has the expected context configured. Be sure to check spelling.
® Be sure that the extension being dialled exists in the dialplan. From the Asterisk CLI, run di al pl an show <cont ext name> to see the
extensions for a particular context. If the extension you are dialing is not listed, then Asterisk does not know about the extension.

Content is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License. 220

® Ensure that if you have modified ext ensi ons. conf recently that you have saved your changes and issued a di al pl an
r el oad from the Asterisk CLI.

® Ensure that the extension being dialled has a 1 priority.

® Ensure the the extension being dialled is in the expected dialplan context.

ARGH! NAT!

NAT is objectively terrible. Before having a look at this section, have a look at this page to be sure that you understand the options available to help combat
the problems NAT can cause.

NAT can adversely affect all areas of SIP calls, but we'll focus for now on how they can negatively affect the ability to allow for incoming calls to be set up.
The most common issues are the following:

® Asterisk routes responses to incoming SIP requests to the wrong location.
® Asterisk gives the far end an unroutable private address to send SIP traffic to during the call.

Asterisk sends traffic to unroutable address
The endpoint option that controls how Asterisk routes responses is f or ce_r por t . By default, this option is enabled and causes Asterisk to send
responses to the address and port from which the request was received. This default behavior works well when Asterisk is on a different side of a NAT from

the device that is calling in. Since Asterisk presumably cannot route responses to the device itself, Asterisk instead routes the response back to where it
received the request from.

Asterisk gives unroutable address to device
By default, Asterisk will place its own IP address into Contact headers when responding to SIP requests. This can be a problem if the Asterisk server is not

routable from the remote device. The | ocal _net, ext ernal _si gnal i ng_addr ess, and ext er nal _si gnal i ng_port transport options can assist in
preventing this. By setting these options, Asterisk can detect an address as being a "local" address and replace them with "external” addresses instead.

Outbound Calls

Asterisk says my endpoint does not exist

If you see a message like the following:

[2014- 10- 14 15:50:50. 407] ERROR[2004]: chan_pj si p.c: 1767 request: Unable to create PJSIP channel - endpoint 'hamerhead’ was not
found

then this means that Asterisk thinks the endpoint you are trying to dial does not exist. For troubleshooting tips about how to ensure that endpoints are
loaded as expected, check the Identify by User subsection in the Incoming Calls section.

Alternatively, if you see a message like the following:

[2014- 10- 14 15:55: 06. 292] ERROR[2578] [C- 00000000] : net sock2. c: 303 ast_sockaddr _resol ve: getaddri nfo("hamerhead", “(null)", ...):
Nanme or service not known

[2014-10- 14 15:55: 06. 292] WARNI NG 2578] [C- 00000000] : chan_si p.c: 6116 create_addr: No such host: hammerhead

[2014- 10- 14 15:55: 06. 292] DEBUJF 2578] [C- 00000000] : chan_si p.c: 29587 sip_request_call: Cant create SIP call - target device not
registered

or

[2014- 10- 14 15:55:58. 440] WARNI NG 2700] [C- 00000000] : channel . c: 5946 ast_request: No channel type registered for 'SIP
[2014- 10- 14 15:55: 58. 440] WARNI NG 2700] [C- 00000000] : app_di al . c: 2431 dial _exec_full: Unable to create channel of type 'SIP
(cause 66 - Channel not inplenented)

then it means that your dialplan is referencing "SIP/hammerhead"” instead of "PJSIP/hammerhead". Change your dialplan to re